

Linear Drainage CK&D Design Guide

Mini Beany Silt Box Mini Beany Silt Box Apertura

ः Marshalls

Landscape House, Premier Way, Lowfields Business Park, Elland HX5 9HT, United Kingdom

375Ø Silt

A SUBSIDIARY OF MARSHALLS PLC © COPYRIGHT MARSHALLS 2020

Introduction

Introduction to Linear Drainage - CK&D

The growing demand for more cost-effective and less complicated drainage systems has led to modern linear drainage becoming the preferred choice amongst specifiers and contractors alike.

Marshalls' unique linear drainage systems combine the clear-cut advantages of linear drainage over traditional point drainage, with the benefits of a high quality, robust concrete system.

Surface water interception

- More efficient at intercepting running water
- Ponding is reduced or eliminated as is streaming water across a site

Shallow depth of construction

- Inherently shallow construction required
- Savings due to reduced excavation
- Reduces construction time, offering further savings
- Less conflict with existing underground services
- Reduced quantities of spoil to be disposed of

Ease of design

- Performs more efficiently with just the use of concrete channels, grates, outfalls and reduced amounts of pipework.
- Only requires shallow depth construction
- Limited number of components required
- Does not require complex crossfalls to be incorporated
- Design of crossfalls and longitudinal falls of adjacent hard landscaping is straightforward
- Improved end user performance

Ease of installation

- Channel line and level can be set out with ease
- Crossfalls are less complex to set out or construct compared with point drainage
- Expensive construction time saved due to shallow construction
- On-site errors are easier to avoid
- Inherently strong and robust concrete reduces on-site damage

Significant cost savings by reducing carrier pipes

- Many schemes can utilise the inherent ability of a channel or combined kerb and drainage system to act not just as the traditional gully in point drainage, but also as the carrier pipe in storing and transporting surface water.
- Any carrier pipes will be at a shallower depth with resultant cost savings
- Fewer expensive manholes required
- Less spoil to be removed from site
- Improved health and safety on site through reduced need for deep excavation work

Storage of surface water

Linear drainage can utilise the storage capability of its channels to good effect where there are limitations placed on the total outflow of the scheme. This temporary storage facility has been utilised to:

- Attenuate peak flows
- Avoid or reduce costs of balancing ponds or reservoirs
- Reduce pipework sizes at outfalls

Reduced maintenance

- Easier and less costly to maintain than other forms of surface water drainage systems
- Easy to access via regular access points
- Blockages will not completely disrupt the whole system and can be dealt with easily
- Inherently strong and robust precast concrete systems resistant to the effects of freeze thaw and de-icing salts

Control of spillage

• Allows total control of unwanted liquids in an emergency

End user comfort

- Eliminates false falls and consequent 'roller coaster' effect for vehicular traffic associated with point drainage
- Level surface offers greater comfort to pedestrians & road users

Selection Process

Linear Drainage Product Selection Procedure

The following pages describe the procedure for choosing the most appropriate Marshalls linear drainage system in a kerbside environment.

Marshalls' comprehensive range of drainage systems can be split into four categories, however focus is on CKD

- 1. Combined Kerb and Drainage systems specifically designed for kerbside use
- 2. Slot Drainage Systems designed primarily (though not exclusively) for non-kerbside use
- 3. Grate Drainage Systems designed primarily (though not exclusively) for non-kerbside use
- Concrete Drainage Systems designed primarily (though not exclusively) for non-kerbside use

The position of outfall, the area to be drained, topography and rainfall intensity will each affect the final decision as to which is the most appropriate system. However, there are two fundamental factors which, more than any other, determine which system is most appropriate;

- Location(i.e. kerbside or non-kerbside)
- Capacity

This Design Guide plus Figure 3, demonstrates the general principles for selecting the appropriate system, with a focus to combined kerb and drainage. Further information on non kerbside/channel can be found in our Design Guide Channel brochure.

* Slot, Concrete & Grate Drainage Systems can also be used in kerbside locations. Where this is the case follow the design procedure for non-kerbside/ channel drainage

Design Principles

Introduction

The basis of hydraulic design of any linear drainage system is fundamentally like any other engineering analysis; an assessment is made of the required performance level that the element has to achieve and this is compared to the element's ability to accommodate this. In the case of linear drainage, how much water (peak run-off) will be flowing down the channel compared to the maximum stated flow capacity of the channel for the given conditions without causing any problems such as flooding.

There are therefore two elements to any linear drainage design; a determination of the peak run-off or maximum flow along and out of the channel and a determination of the system's maximum capacity.

Peak Run-Off

The determination of peak run-off will depend upon many considerations including;

- Size and location of the drained area
- Use and application of the drained area
- Chosen or calculated rainfall intensity

Whilst several methods of calculating the peak storm water run-off exist, there are two which [Marshalls recommend] should be considered when designing linear drainage systems;

- The Simple Area Run-Off Method
- The Modified Rational Method (often referred to as The Wallingford Procedure)

The Simple Area Run-Off Method

In the Simple Area Run-Off Method, it is assumed that the whole of the drained area contributes to the peak flow, that the rainfall intensity is uniform over the whole area and additionally that a value for the rainfall intensity is actually assumed. Therefore the assumed value for rainfall intensity is directly proportional to the peak run-off. A balance is often made between cost and the level of performance required but it is generally accepted that this method will yield conservative results.

The peak run-off formula used in this method is:-

 $Q = A \times i/3600$, where

Q is the peak storm water run-off (in litres per second)

A is the drained area (in square metres)

"i" is the rainfall intensity (in millimetres per hour)

Mono Beany

In addition, this method of peak run-off determination should be limited to use when designing relatively small drained areas (less than 10,000m²) and when designing relatively short runs of linear drainage (less than 200m).

The Modified Rational Method

The Modified Rational Method (often referred to as The Wallingford Procedure) is considered more accurate for larger schemes with longer drainage runs. Whilst the method generally assumes that the whole drained area contributes to the peak run-off, it uses typical storm profiles based upon data and takes into account geographical rainfall variations. In this way, the critical rainfall intensity for a given set of parameters and conditions can be calculated. The only decision that a designer makes is to choose a storm return period.

Maximum System Capacity

Analysis of water flow along a linear drainage system where water continuously enters the system laterally is complex and differs in some respects to flow in circular pipes. It is usual to assume that flow in pipes is uniform or steady as the "flow in" equates to the "flow out" and that as the parameters along the system will generally remain unchanged, the flow is essentially unaltered. For these conditions, flow capacity has been determined from traditional methods such as the Colebrook-White formulae.

Where continuous lateral inflow is involved and particularly where large flows for large drained areas are concerned, a steady flow state may not be achieved and an alternative to steady state flow capacity determination may need to be considered.

Research work carried out at HR Wallingford has considered this aspect of Marshalls' linear drainage systems. The principle of spatially variable flow was established where, particularly for shallow gradients, the position of peak depth and hence the critical location moves from the assumed location at the outfall upstream towards the head of the run. The research work confirmed that for Marshalls' Beany Block system, where flow-capacities have traditionally been calculated using Colebrook-White, for all practical applications the capacities quoted were realistic and accurate. However, Colebrook-White gave very conservative figures for shallow gradients or flat applications and more cost-effective designs can be completed using data derived from the HR Wallingford work.

Design Principles

The theory and practical application of flat channel flow is confirmed in TRL Report 602.

Flow data contained in the Marshalls Drainage Design Guide are derived from both HR Wallingford research and from traditional methods. Each system's data will indicate its source.

In addition to flow capacity figures, velocity data is also included. The velocity data has been determined by dividing the appropriate flow capacity by the full cross section area for the section under consideration. For Colebrook-White derived flows, this is accurate; for HR Wallingford derived flows this is **conservative**.

Other Considerations

There are other aspects of linear drainage design beyond the factors given above. These include:

Maintenance

All surface water collection and transport systems will require maintenance to ensure efficient performance. Where linear drainage is designed for shallow gradients due care must be taken in the design for the effects of silting. Many systems are kept free from silting by the action of fast flow, HR Wallingford's research confirmed that velocities flows as low as 0.4m/s "caused silt to move".

Existing Drainage

The location of existing drainage systems may often determine the location of the linear drainage outfall. This may or may not coincide with the most cost effective or efficient linear drainage design.

Ground Levels

Existing ground levels will determine low points and gradients, particularly so for roads and highways. This can mean that outfall locations are not determined by the hydraulic design. Where the channel longitudinal gradients varies, an equivalent uniform gradient may be derived from the HA advice note HA37. Specific advice on the application of this for Marshalls' linear drainage or combined kerb and drainage systems is available upon request.

Cross Falls and Drained Widths

Generally, cross falls should be between 1 in 40 to 1 in 80 whilst the maximum drained distance to any linear drainage should typically not exceed 50m.

Outfalls

As indicated the location of outfalls is sometimes not determined by the hydraulic design. Where the choice of outfall location is within the designer's control, and particularly where long drainage runs are being designed, the capacity of the outfall pipe work can sometimes limit the efficiency of the system. Capacity figures for Marshalls' outfalls are given in the appropriate sections. These figures are based upon theoretical but conservative calculations. Details are available upon request.

General Construction

Manual Handling

As a substance, cured concrete is non-hazardous; however it is heavy, hard and abrasive. Manual handling of these products therefore has associated hazards. Only individuals who have received training in kinetic handling techniques should be allowed to handle these products. Gloves should be worn when handling concrete products to avoid cuts, abrasions and/or skin irritations.

Marshalls advises that the majority of their drainage components be installed using mechanical handling equipment. Techniques using mechanical handling equipment, such as vacuum machines, have been proven to eliminate manual handling on many sites. Overall project savings have been shown through the benefits of easier, more efficient and less wasteful installation. Suitable equipment is available from Probst Handling and Laying Systems.

A DVD clearly showing the principles and advantages of using mechanical handling equipment and techniques for the installation of Beany Block is available by contacting the Marshalls Drainage Design Team.

Inclement weather

Installation operations should be discontinued if weather conditions are such that the performance may be jeopardised.

Installation should not be undertaken when the temperature is below 3° C on a falling thermometer and below 1° C on a rising thermometer.

COSHH

All relevant health and safety information, including COSHH data sheets, can be obtained from Marshalls Advisory Services or Drainage Design Team.

Protection

All necessary Personal Protective Equipment (PPE) should be worn on site, as the site rules dictate. Goggles, ear protection, dust masks and protective footwear must always be worn whenever cutting operations are undertaken.

Cast Iron

In certain areas of this Design Guide, reference is made to cast iron as a generic material.

Cast iron is available as either 'grey' iron (flake graphite) or 'ductile' iron (spheroidal graphite). We do not believe that, for the product's intended use, the material type will affect performance. However, if you wish to know the material type this is given in the specific product data sheet.

The coating applied to our cast iron is a temporary bitumen based coating that will become dull and lose its gloss over a period of time. It is not intended to protect the casting in use and would be expected to break down over a short period of time, either through weathering, or by being worn off when trafficked. As this happens the product would be expected to show signs of surface oxidation.

From the perspective of long term structural performance, the application of such coatings is not intended to serve any purpose; the corrosion mechanism of cast iron is very different to that of steel and is not detrimental to structural performance.

Both grey and ductile iron contain high quantities of silicon, which upon oxidation converts to silica (alongside the iron oxide) producing a tough non-porous homogenous surface coating. In addition, there is a slight reduction in volume, causing this coating to bind tightly onto the surface which effectively protects the iron and prevents further oxidation.

If the area is regularly trafficked, the grates will fairly quickly polish up to a dark colour.

If the area is not regularly trafficked and where aesthetics are important, then galvanised steel, stainless steel or powder coated cast iron gratings (all options that are available) should be considered.

Why Choose Marshalls?

Marshalls plc is the UK's leading hard landscaping company. We have achieved this status through progressive product innovation and by demonstrating outstanding service levels to our customers. This privileged position will be sustained by continuous investment in our brand, our products, and our people.

This dedication to excellence is exemplified by Marshalls committment to developing a first class range of linear channel drainage products that fit even the most bespoke hydraulic system requirements. Marshalls experience and expertise can ensure that the right system is selected, detailed, delivered and installed to give total peace of mind.

Marshalls pledges that all of the drainage products featured in this book comply with relevant industry standards, are manufactured to the highest standards, are fit for purpose and are designed to optimise savings in manufacture and use.

Marshalls' purchasing policy sets out the standards and ethics by which we conduct our business and operate our management systems to manage our suppliers.

The majority of our products are manufactured in the UK; where products are sourced from outside the UK an ethical risk assessment is completed and an appropriate action plan agreed - multi-stakeholder independent social audits are part of our best practice. Marshalls is a member of both the Ethical Trading Initiative and UN Global Compact.

Marshalls accepts legal compliance as an absolute minimum standard to which we work and, where no legislation is in place, we use industry best practice. Legal compliance is monitored through our independently audited management systems. Our Board is ultimately responsible for ensuring the business operates in a socially responsible way, including compliance with relevant legislation.

Why Choose Marshalls?

We are dedicated to creating spaces that make the world a better place for everybody – one pavement, one car park, and one city centre at a time.

Our vision is built upon four pillars: values by which our every decision is guided, no matter how big or small.

Demonstrating leadership.

We believe in driving the industry forward. It's an ambition we've been acting on for 120 years, thanks to our size, capability, range of products and unmatched market knowledge.

Delivering excellence.

We have very high standards. Our products have to be innovative, our people have to be the best, our workmanship has to be perfect. Only then can we deliver the quality we're renowned for, at every stage of the process.

Building trust.

Everyone at Marshalls acts with integrity, treating customers and their projects with care and respect. It means people trust us with their home, their business, their town. And it's how we foster relationships for the long-term.

Being sustainable.

We use the world to source our products, so we have a responsibility to look after it. It's something we have been committed to for over 120 years and has ensured our longevity. Whether it's creating stronger communities, preserving environments, or contributing to the UN Global Compact, our work is always sustainable.

Marshalls is a member of the Ethical Trading Initiative (ETI).

WE SUPPORT

Design Service & Project Support

Engineering Solutions

Marshalls is committed to ensuring that the right system is selected, detailed, delivered and installed. The understanding that the right selection of linear drainage system is crucial to the function of any hard landscaped area therefore Marshalls Linear Drainage Team will work in partnership with the specifier or designer, engineer and contractor, to become an integrated part of the design process, helping transform and deliver ideas into hydraulic designs matched to the individual project requirements to give total peace of mind. "Our everyday goal is simple – Support the customer's performance and aesthetic design aspirations with a commercially driven, value added Design Support Service, excelling through Computer Aided Drawings, engineered solutions and technical advice."

Marshalls **free, no-obligation** Drainage Design Service encompasses the following services:

In-House Design Support Services

By use of our bespoke computer software the Design Team can plan realistic and rapid solutions to your drainage needs. The Design Team will:

- Work with the project team to ensure the client's expectation
 are met
- Operate with either electronic (CAD)
- Assist in the selection of the most appropriate system
- Provide hydraulic data to support the adequacy of the selected system
- Provide schedule and / or layouts of the components as appropriate
- Value Engineer design to drive down project costs

Flexible input options enable the user to generate required rainfall events in terms of duration and return period whilst also having the capability to adjust for climate change. These features ensure that each Marshalls linear drainage design can be tailored to meet the requirements of a specific project.

Online Hydraulic Design Software

Marshalls bespoke software (the online design tool) can enable you to plan realistic, precise and cost effective solutions to your drainage needs, all at your fingertips through a simple step-by-step process.

The software uses simple area run-off method to calculate the run-off from an area with flexible rainfall parameters, with an allowance for climate change. A simple procedure is followed to ensure selection of the correct Marshalls linear drainage system from a structural, aesthetic and hydraulic perspective.

The Online Design Tool will:

- Give access at all times from most web active devices
- Automatically update with additional or new product and technical data
- Calculate flow rates and capacity levels required

CPD Presentations and Training

Marshalls Linear Drainage Team provides free of charge comprehensive and industry leading range of CPD (Continuous Professional Development) seminars to architects, engineers and contractors.

Marshalls CPD seminars cover a whole range of water management topics and solutions from permeable paving to linear and combined kerb and drainage systems.

Design Service

Marshalls was an early adopter of Building Information Modelling (BIM) and has invested heavily in developing our people and skills to create the appropriate BIM objects and data that large commercial projects demand. The company is continuously building a BIM object library that will be unrivalled in the Landscape sector and currently collaborates with relevant industry bodies to develop the training strategies, product data and software that will drive BIM adoption across the industry.

Bespoke Solutions

Detailed design features often make the difference between good and great. Marshalls is always delighted to take challenging briefs for bespoke landscape linear drainage features.

Liverpool Lime Street Station required a discreet drainage solution to follow the curvature of the architecture. Marshalls was able to develop a true radius slot drain to meet the clients requirements.

The client of the Welding Institute in Cambridge required a linear drainage solution for a multi story car park. Marshalls was able to recommend and supply Marshalls Birco Profil, a shallow steel channel designed for low construction heights whilst providing optimum drainage performance, reliable traffic safety and attractive design.

Further Technical documentation is also available:

- Microdrainage conduit files
- Computer Aided Design product drawings
- Technical product data and specification sheets
- Declaration of performances in accordance with BS EN 1433:2002
- Maintenance and cleaning regimes
- Online installation guides & videos.

Design Service

Harshalls

Design Space - London and Birmingham

We have two bespoke work spaces, London and Birmingham, to inspire landscape design professionals. Bookable spaces for meetings, brainstorm sessions, or simply quiet space to think and create. Fully kitted to explore materials, colours and textures, BIM Models,

technical data and social media platforms all on screen. Extra events are a regular programme of seminars, notable speakers, and CPD. Open Space for big ideas, Personal Space for quiet contemplation, Inner Space for imagination.

London: Marshalls, DesignSpace, Unit 4 Compton Courtyard, 40 Compton St, EC1V 0BD

Birmingham: Marshalls, DesignSpace, 3rd Floor, 36 Bennetts Hill, Birmingham, B2 5SN

Product Range Combined Kerb & Drainage

Product Range Combined Kerb & Drainage

Bridge Beany[®]

Combined Kerb & Drainage System

45° Splayed 500 x 150 x 100mm

45° Splayed 500 x 175 x 100mm

45° Splayed 500 x 275 x 100mm

45° Splayed 500 x 350 x 100mm

45° Splayed 500 x 450 x 100mm

HB 500 x 150 x 100mm

HB 500 x 175 x 100mm

HB 500 x 275 x 100mm

HB 500 x 350 x 100mm

HB 500 x 450 x 100mm

Further Information

The following further information is available:

Technical Support, Product Data Sheets and COSHH	Marshalls Advisory Service Tel: 0370 4112233 Fax: 01422 312943 e-mail: advisoryservice @marshalls.co.uk
Free Design Service	Drainage Design Team Tel: 0345 30 20 708 e-mail: design.team@marshalls.co.uk
Sales Office:	Tel: 0345 3020400
Quotes and Orders	e-mail: wmsales@marshalls.co.uk
Contract Information:	
Appendix 5/5 for Combined Kerb and Drainage systems	
Appendix 5/6 for Linear and Drainage systems	
Appendix 5/3 for Slot Drainage systems	
Method of Measurement	
Contract Schedule	

- Original and largest capacity CK&D product on the market
- Largest hydraulic capacity and strongest loading classification for CK&D
- Trusted and Proven for at least forty years with over one million linear metres installed and working
- Two Piece Concrete System available in standard or textured finishes
- Supported by a range of accessories

Beany® Block ♥

Combined Kerb and Drainage System

Highly resistant to de-icing salts, anti freeze and other noxious pollutants

Half battered straight backed Beany Top 500mm (range of Top Units available)

Steeply inclined and divergent inlet aperture ensures efficient water interception and freedom from blockages

Excellent slip/skid resistance

Fully compatible with Max-E-Channel/ Mini Beany/Traffic Drain/ Pre-cast Concrete Kerb

Two part system allowing easy installation whilst ensuring level inverts and allowing for future resurfacing

500mm long Base Channel (range of base depths available)

- Beany Block carries the British Standard Kitemark
- High capacity.
- Proven and trusted.
- Great problem solver.
- General installation detail ensures load classification E600.
- A full and comprehensive range.
- Withstands installation damage.

Beany Block is the original combined kerb and drainage system which has been on the market for over 30 years. This tried, tested and proven system provides a unique, flexible and cost-effective solution to highway drainage requirements.

Mini Beany, Traffic Drain and Max-E-Channel further extend the use of this product.

The System

Beany Block consists of base units of standard channel section and top units of inverted channel section, with an elliptical aperture in the centre of one side face. When installed they form a combined kerb and surface water drainage system strong enough to withstand loadings imposed by both road and construction traffic.

The system has excellent surface drainage efficiency which coupled with its large flow capacity, makes Beany Block superior to and much less expensive than conventional kerb and point drainage on many highway and non-highway schemes.

Versatile

Beany Block is suitable for inclusion in highway schemes (although the system is likely to be most cost-effective in flat areas), reconstruction works where existing drainage systems have failed or where there is no existing surface water drain. Beany Block has been installed in schemes ranging from a few metres to several kilometres, from motorways and trunk roads to estate roads, service yards and car parks throughout the UK, Ireland and mainland Europe.

Despite its simplicity, Beany Block has many important design features which give it significant engineering benefits over alternative systems.

Note

Engineers wishing to incorporate Beany Block within a scheme should read this or use our free, no obligation Design Service.

Beany Block installation, mechanically handled

Cost Advantages

Beany Block is ideal where specific problems would arise with conventional drainage methods for example:

- Where there is insufficient fall to the outfall point.
- Where, in flat areas, either numerous, closely spaced gullies or false falls would be required in the carriageway.
- Where long gully connections would be needed.
- Where surface water drainage pipes would conflict with service mains and cables.
- Where ponding would occur at low points.
- Where traffic safety and control measures would be required when widening existing carriageway.

Beany Block is likely to be more economical than conventional kerb/point drainage where carriageways have crossfall, few vehicular crossings or where a surface water drain would be required for highway drainage purposes. Cost savings have been significant on highway and non-highway schemes incorporating lengths of the Beany Block system. For comparison purposes, conventional methods should include the following as appropriate:

- Surface water drain (including reinstatement).
- Gullies.
- Gully connections
- Manholes.
- Kerbs.
- Channel Blocks.
- Extra 200mm width of footway plus a small amount of carriageway.
- Service diversions.
- Traffic safety and control (existing carriageways).

Beany Block is a simple two part system Straight Backed Top Unit and 295 Base

High Capacity Performance

- Beany Block is a high capacity system able to store storm water. Where limitations are placed on outfall capacities, Beany can help eliminate the need for storage reservoirs or balancing ponds.
- Beany Block can be used in flat areas or steep gradients.
- Inlet apertures are less than 500mm apart, reducing running or fast flowing water on the carriageway and eliminating ponding.

Construction Savings

- The Beany System combines water interception and transportation in one system. This minimises or eliminates the need for carrier drains, gullies and manholes, reducing construction costs and saving time.
- Simple two-part system straightforward to design and detail, reducing design times and cost. Easy to set out and straightforward to install.
- The overall construction period can be reduced as carriageway
 materials may be laid in a continuous sequence. Unlike laying
 conventional drainage, excavations are kept to a minimum without
 exposing the formation and sub-base surfaces to possible periods of
 adverse weather.
- Underground cables and services can be avoided so contractual/ insurance claims are likely to be much less than when laying conventional drainage.

Low Maintenance

 Beany Block will require periodic inspection and emptying of Silt Traps, Outfalls and Catchpits. The number of Silt Traps and Outfalls are likely to be fewer than in a conventional drainage systems*. If a blockage does occur, it can easily be located and rectified by rodding or jetting from an access point or through a top block aperture adjacent to the blockage.

* It is reccommended to have an access point at the head of the run and every 50m and a Silt Trap every 100m

Conservation Beany Block

- A silver grey coarse textured finish top unit, manufactured with granite aggregate, complements perfectly areas of high architectural, historical and scenic value. This product complements Marshalls Silver Grey Conservation Paving Kerb and Edging along with Mistral Concrete Block Paving and Conservation Setts. Mini Beany and Mono Beany are also available in Conservation.
- Conservation Beany is available with coarse texture to 2 or 3 faces and manufactured to order for an agreed quantity.

Engineering Benefits

Manufacture

Principal components are manufactured from natural coloured, hydraulically pressed concrete.

The high inherent strength and durability of pressed concrete means the Beany System can:

• Allow complete compaction of surfacing materials adjacent to the channel during construction.

Top Blocks

- Symmetrical Top Units available to allow reversal of the units as appropriate to collect storm water from both sides of a run.
- Allows access for road rollers to fully compact carriageway surfacing material right up to the channels edge without damaging the units of particular importance where carriageways have steep super elevation

Elliptical Water Inlet Aperture

- Located centrally within each top block to give maximum strength and wider on the inside of the top block preventing resistance against loads imposed by overriding heavy vehicles.
- Positioned and shaped to give maximum drainage efficiency as well as a pleasing appearance.
- Wider on the inside of the top block to prevent blockages, inclined at 45 degrees to prevent silting and also to allow inspection of and rodding access to the base unit inverts.
- The elliptical inlet aperture is 120mm wide and 90mm in height

Road and Vehicular Crossings

- The system has been specifically designed so that where base units and cover plates are used to carry flows under carriageways or vehicular crossings, a minimum of 150mm of road material can be laid above the units to prevent damage and reflective carriageway surface cracking.
- The base unit maintains line and level under road crossings helping to keep construction time and costs to a minimum.
- Beany Block is fully compatible with the Max-E-Channel system. This allows for easy transition of Beany Block to Max-E-Channel.
- Instances where the flow collected in a run of Beany needs to continue across a junction or entrance and where interception of surface run-off is still required is possible with the use of Max-E-Channel.
- The invert is maintained and the differential height of the Beany and Max-E-Channel system is specifically designed to allow continuity of pavement level.

Pedestrian Crossing

- The system has been designed to allow for the construction of pedestrian drop crossings. Flow can continue in base units and cover plate support the standard kerbs used at the crossing.
- The advantage of separate base and top blocks is that it is easy to retrofit pedestrian crossings in any length of Beany.

- Provide resistance to horizontal displacement by heavy vehicles when held rigidly in place on site by backing concrete and the road materials on the front face.
- Withstand de-icing salts and freeze/thaw effects reducing maintenance and increasing service life.
- The manufacturing process enables tight dimensional control which produces consistent units for ease of on-site construction.

Beany Drainage from both sides using symmetrical top

Wider on the inside of the Top Block to prevent blockages. Inclined at 45° to prevent 'silting' and also to allow inspection of and rodding access to the Base Unit inverts.

Beany to Cover Plates

Beany to Max-E-Channel (cast iron with holes)

Beany at pedestrian crossing point

TOP COMPONENTS

- Half battered front face profile.
- Straight back to assist with paving up to the back of the unit.
- Kerb upstand 75-125mm.
- 500mm in length.

(low hole)

Half battered

straight backed

- Half battered front face profile.
- Straight back to assist with paving up to the back of the unit.

asphalt or high kerb

upstand applications.

500mm in length.

Kerb upstand 150mm. • Kerb upstand For use with porous 75-125mm.

.

.

• 500mm in length.

Half battered profile to

both front and back face.

Symmetrical to allow top

to be rotated to drain

from both sides.

Half battered

symmetrical

Half battered symmetrical (low hole)

- Half battered profile to both front and back face.
- Symmetrical to allow top to be rotated to drain from both sides.
- Kerb upstand 150mm.
- For use with porous asphalt or applications requiring high kerb upstand.
- 500mm in length.

45° splayed straight backed

- 45 degree splayed front face profile.
- Straight back to assist with paving up to the back of the unit.
- Kerb upstand 75-100mm.
- 500mm in length.

BEANY BLOCK BASE COMPONENTS

All Base Units, Ancillary items and Transition Units are 500mm long

.

BASE END CAPS

Base end caps are available for 205, 295 and 365 base units. The galvanised steel plates act as permanent formwork to a concrete surround.

This is an optional detail to the use of engineering bricks.

Top Components

Cover Plates

- Allows for 150mm of cover above the base unit with cover plate.
- Permits the use of standard drop kerbs at vehicular/pedestrian crossings before and after cover plated units.
- Allows sufficient road construction material above the protective concrete cover to avoid possible damage to the units and plates by heavy traffic.

Stop End Top Unit

- Available right and left handed (RH shown).
- Forms the transition from the Beany Block system to normal half battered kerbs at pedestrian or vehicular crossings.
- Forms the transition from the Beany Block system to normal half battered kerbs at pedestrian or vehicular crossings.

Access Covers

- All Beany Block access covers are now lockable for improved security.
- Cast Iron access covers and frames are available for use at outfalls, silt traps and access points.
- Compatible with all top blocks.
- Universal hinge can be changed to to either end of the acess lid to cater for offside or nearside applications
- Provide large access opening for the emptying of silt traps and outfall sumps using traditional equipment.

Stop End Top Unit (RH)

Bus Stop Unit Top (LH) Bus Stop Unit Top

Bus Stop Unit Top (RH)

Cable Duct Blocks

 Polymer concrete cable duct units are available to permit insertion of traffic signal loop detector or other small cables between carriageway and footway/verge.

Bus Stop Units

- The Beany Bus Stop CKD's height and positioning means that passengers can be confident of safe and easy access to buses and other road transportation.
- The units also have our elliptical water inlet aperture to allow surface water collection from the carriageway and avoids standing water on the carriageway around the bus stop.

Radius Blocks

- Top and base units for external and internal horizontal curve radii from 50 metres down to 6 metres.
- Smaller radii can be manufactured to order.

Radius	Type of Unit
>50	Standard
50.0-19.1	50/20
19.0-10.8	19/11
10.7-7.7	10/8
7.6-6.0	7/6
<6.0	Special to order
Right angle	90°
45° angle	45°

Straight Backed/Symmetrical Access Cover

45° Splayed Access Cover

Straight Backed/ Symmetrical Cable Duct - ø50

45° Splayed Cable Duct ø50

Hydraulic Data

FLOW CAPACITY

Hydraulic Data

The Beany Block hydraulic data stated in the following tables comprises of flow capacity, in litres per second (I/s) and velocity in metres per second (m/s). This data has been calculated using spatially variable flow design principles.

Symmetrical HB & Straight Backed Top Block

Base 205																
Gradient	Z	ero	1 in	1000	1 in	n 500	1 in	n 400	1 in	300	1 in	200	1 in	100	1 ir	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	31	0.48	37	0.58	42	0.66	45	0.70	48	0.75	55	0.86	64	1.00	79	1.23
100	27	0.42	36	0.56	43	0.67	47	0.73	52	0.81	62	0.97	71	1.11	86	1.34
150	24	0.38	35	0.55	44	0.69	48	0.75	55	0.86	69	1.08	78	1.22	93	1.45
200	20	0.31	33	0.52	44	0.69	50	0.78	59	0.92	76	1.19	85	1.33	99	1.55
250	17	0.27	32	0.50	45	0.70	52	0.81	62	0.97	83	1.30	92	1.44	106	1.66

Base 295																
Gradient	Z	ero	1 in	1000	1 ir	n 500	1 ir	400	1 ir	300	1 in	200	1 in	100	1 in	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	47	0.53	56	0.64	63	0.72	66	0.75	71	0.81	80	0.91	93	1.06	115	1.31
100	43	0.49	55	0.63	64	0.73	68	0.77	75	0.85	89	1.01	102	1.16	123	1.40
150	37	0.42	53	0.60	65	0.74	70	0.80	79	0.90	96	1.09	110	1.25	131	1.49
200	35	0.40	51	0.58	65	0.74	72	0.82	83	0.94	105	1.19	118	1.34	140	1.59
250	30	0.34	50	0.57	66	0.75	74	0.84	87	0.99	113	1.28	127	1.44	148	1.68
300	26	0.30	48	0.55	67	0.76	76	0.86	91	1.03	122	1.39	135	1.53	156	1.77
350	22	0.25	46	0.52	68	0.77	78	0.89	95	1.08	130	1.48	143	1.63	164	1.86

Base 365																
Gradient	Zero 1 in 1000		1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ii	n 50	
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	61	0.58	73	0.70	81	0.77	85	0.81	91	0.87	102	0.97	119	1.13	147	1.40
100	57	0.54	71	0.68	82	0.78	87	0.83	95	0.90	111	1.06	128	1.22	155	1.48
150	53	0.50	69	0.66	83	0.79	89	0.85	99	0.94	120	1.14	137	1.30	164	1.56
200	48	0.46	68	0.65	84	0.80	91	0.87	104	0.99	128	1.22	145	1.38	173	1.65
250	44	0.42	66	0.63	85	0.81	94	0.90	108	1.03	137	1.30	154	1.47	182	1.73
300	39	0.37	64	0.61	85	0.81	96	0.91	112	1.07	146	1.39	163	1.55	191	1.82
350	35	0.33	62	0.59	86	0.82	98	0.93	117	1.11	155	1.48	172	1.64	200	1.90
400	31	0.30	61	0.58	87	0.83	100	0.95	121	1.15	164	1.56	181	1.72	208	1.98

Base 630	Base 630															
Gradient	Ze	ero	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
100	136	0.66	164	0.79	183	0.88	192	0.93	206	1.00	233	1.13	271	1.31	334	1.61
150	131	0.63	161	0.78	184	0.89	195	0.94	212	1.02	245	1.18	283	1.37	345	1.67
200	125	0.60	159	0.77	186	0.90	198	0.96	217	1.05	256	1.24	295	1.43	357	1.72
250	119	0.57	157	0.76	187	0.90	201	0.97	223	1.08	268	1.29	307	1.48	369	1.78
300	113	0.55	154	0.74	188	0.91	204	0.99	229	1.11	280	1.35	319	1.54	381	1.84
350	107	0.52	152	0.73	189	0.91	207	1.00	235	1.14	292	1.41	331	1.60	393	1.90
400	101	0.49	150	0.72	190	0.92	210	1.01	241	1.16	303	1.46	342	1.65	404	1.95
450	96	0.46	147	0.71	191	0.92	213	1.03	246	1.19	316	1.53	354	1.71	416	2.00
500	90	0.43	145	0.70	193	0.93	216	1.04	252	1.22	327	1.58	366	1.77	428	2.07
550	84	0.41	143	0.69	194	0.94	219	1.06	258	1.25	339	1.64	377	1.82	440	2.13
600	78	0.38	140	0.68	195	0.94	222	1.07	264	1.28	351	1.70	390	1.88	451	2.18

Hydraulic Data

Beany[®] Block & 45[°] Splayed Top Block

Base 205																
Gradient	Ze	ero	1 in	1000	1 ir	n 500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	30	0.47	36	0.56	41	0.64	43	0.67	46	0.72	53	0.83	61	0.95	75	1.17
100	27	0.42	35	0.55	41	0.64	44	0.69	49	0.77	59	0.92	67	1.05	81	1.27
150	24	0.38	34	0.53	42	0.66	46	0.72	52	0.81	65	1.02	73	1.14	87	1.36
200	21	0.33	33	0.52	42	0.66	47	0.73	55	0.86	71	1.11	79	1.23	93	1.45
250	18	0.28	31	0.48	43	0.67	49	0.77	58	0.91	77	1.20	85	1.33	99	1.55
300	15	0.23	30	0.47	44	0.69	50	0.78	61	0.95	83	1.30	91	1.42	105	1.64

Base 295																
Gradient	Zero 1 in 1000		1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	n 50	
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s								
50	45	0.51	55	0.63	61	0.69	64	0.73	68	0.77	77	0.88	90	1.02	111	1.26
100	42	0.48	53	0.60	62	0.70	66	0.75	72	0.82	85	0.97	97	1.10	118	1.34
150	39	0.44	52	0.59	63	0.72	68	0.77	76	0.86	92	1.05	105	1.19	125	1.42
200	35	0.40	50	0.57	63	0.72	69	0.78	79	0.90	99	1.13	112	1.27	133	1.51
250	31	0.35	49	0.56	64	0.73	71	0.81	83	0.94	106	1.20	119	1.35	140	1.59
300	28	0.32	47	0.53	65	0.74	73	0.83	86	0.98	114	1.30	126	1.43	147	1.67
350	24	0.27	46	0.52	65	0.74	75	0.85	90	1.02	121	1.38	134	1.52	154	1.75
200 250 300 350	39 35 31 28 24	0.44 0.40 0.35 0.32 0.27	52 50 49 47 46	0.59 0.57 0.56 0.53 0.52	63 63 64 65 65	0.72 0.72 0.73 0.74 0.74	68 69 71 73 75	0.77 0.78 0.81 0.83 0.85	76 79 83 86 90	0.86 0.90 0.94 0.98 1.02	92 99 106 114 121	1.05 1.13 1.20 1.30 1.38	105 112 119 126 134	1.19 1.27 1.35 1.43 1.52	125 133 140 147 154	

Base 365																
Gradient	nt Zero 1 in 1000		1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50	
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	60	0.57	71	0.68	79	0.75	83	0.79	88	0.84	99	0.94	115	1.10	142	1.35
100	56	0.53	70	0.67	80	0.76	85	0.81	92	0.88	107	1.02	123	1.17	150	1.43
150	53	0.50	68	0.65	81	0.77	87	0.83	96	0.91	115	1.10	131	1.25	158	1.50
200	49	0.47	67	0.64	81	0.77	89	0.85	100	0.95	122	1.16	139	1.32	167	1.59
250	45	0.43	65	0.62	82	0.78	91	0.87	103	0.98	130	1.24	147	1.40	174	1.66
300	41	0.39	64	0.61	83	0.79	93	0.89	107	1.02	138	1.31	155	1.48	182	1.73
350	37	0.35	62	0.59	84	0.80	94	0.90	111	1.06	146	1.39	163	1.55	190	1.81
400	33	0.31	60	0.57	85	0.81	96	0.91	115	1.10	154	1.47	171	1.63	197	1.88

Base 630																
Gradient	Ze	ero	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
100	136	0.66	162	0.78	181	0.87	190	0.92	203	0.98	229	1.11	267	1.29	329	1.59
150	130	0.63	160	0.77	182	0.88	192	0.93	208	1.01	241	1.16	278	1.34	340	1.64
200	125	0.60	158	0.76	183	0.88	195	0.94	214	1.03	252	1.22	289	1.40	351	1.70
250	119	0.57	155	0.75	184	0.89	198	0.96	219	1.06	263	1.27	301	1.45	362	1.75
300	114	0.55	153	0.74	185	0.89	201	0.97	225	1.09	274	1.32	311	1.50	373	1.80
350	108	0.52	151	0.73	186	0.90	203	0.98	230	1.11	285	1.38	323	1.56	384	1.86
400	103	0.50	149	0.72	188	0.91	206	1.00	235	1.14	296	1.43	334	1.61	395	1.91
450	97	0.47	145	0.70	189	0.91	209	1.00	241	1.16	307	1.48	345	1.67	406	1.96
500	91	0.44	144	0.70	190	0.92	212	1.02	246	1.19	318	1.54	356	1.72	417	2.01
550	86	0.42	142	0.69	191	0.92	214	1.03	252	1.22	329	1.59	367	1.77	428	2.07
600	80	0.39	140	0.68	192	0.93	217	1.05	257	1.24	340	1.64	378	1.83	439	2.12

Theoretical Outfall Capacities			
Outfall Type	Outlet Pipe Diameter (mm)	l/s	m/s
Beany Outfall with Base 205	150	36	3.32
Beany Outfall with Base 295	150	38	3.52
Beany Outfall with Base 365	150	40	3.67
Beany Outfall with Base 205	225	82	3.40
Beany Outfall with Base 295	225	87	3.60
Beany Outfall with Base 365	225	91	3.75

For hydraulic rates of Beany bases and cover plates, refer to the Max-E Channel and concrete top hydraulic table.

Beany Block Component Codes

A Top Blocks

Top Blocks	Length (mm)	Width (mm)	Height (mm)	Unit Weight (kg)	Item Code
HB Straight Back	500	430	255	71	DR700020
HB Straight Back Conservation	500	430	255	75	DR9300023
HB Straight Back Low Hole	500	430	255	71	DR700030
HB Symmetrical Low Hole	500	430	255	71	DR700035
HB Symmetrical	500	430	255	73	DR700010
45 Splayed Straight Back	500	430	255	76	DR700060
HB Bus Stop 180 Upstand	500	430	350	71	DR791010

* Special finishes may be available upon request

C Constant Depth Channels

Constant Depth Channels	Length (mm)	Width (mm)	lnvert Width (mm)	Depth (mm)	Invert Depth (mm)	Unit Weight (kg)	Item Code
205 Press chan	500	430	280	205	135	70	DR720021
295 Press chan	500	430	280	295	205	85	DR720010
365 Press chan	500	440	280	365	275	96	DR720030
630 Press chan	500	440/490	280/360	630	555	110	DR720045

D Radial Channels

Radial Base Channels	Unit Weight (kg)	Item Code
205 Base 50/20m	69	DR808010
205 Base 19/11m	69	DR808030
205 Base 10/8m Cut	69	DR808040
205 Base 7/6m Cut	69	DR808040
205 Base 45° External Corner	174	DR900210
295 Base 50/20m	79	DR800020
295 Base 19/11m	79	DR800030
295 Base 10/8m Cut	79	DR800040
295 Base 7/6m Cut	79	DR800050
365 Base 50/20m Cut	95	DR820010
365 Base 19/11m Cut	95	DR820030
365 Base 10/8m Cut	95	DR820040
365 Base 7/6 Cut	95	DR820050
630 Base 50/20m	105	DR825020
630 Base 19/11m Cut	105	DR825030
630 Base 10/8m Cut	105	DR825040
630 Base 7/6m Cut	105	DR825050

More radius and corner units can be made available on request

Radial Tops	Unit Weight (kg)	Item Code
HB 50/20m Ext	71	DR730020
HB 19/11m Ext	71	DR730030
HB Cut 10/8m Ext	71	DR730040
HB Cut 7/6m Ext	71	DR730050
HB Cut 10/8 Int	71	DR730240
HB Cut 7/6 Int	71	DR730250
HB Cut 50/20m Int	71	DR730210
HB Cut 19/11m Int	71	DR730230
HB St Back 10/8m Int	71	DR740240
HB St Back 7/6 Int	71	DR740250
HB St Back 7/6 Int	76	DR751050
HB St Back 50/20m Ext	69	DR740020
HB St Back 19/11m Ext	69	DR740030
HB St Back Cut 10/8m Ext	69	DR740040
HB St Back Cut 7/6m Ext	69	DR740050
HB St Back Cut 50/20 Int	69	DR740210
HB St Back Cut 19/11 Int	69	DR740230
45° SP Str Bk Cut 50/20 Int	76	DR751009
45° SP Str Bk Cut 50/20 Ext	76	DR751010
45° SP Str Bk Cut 19/11 Ext	76	DR751031
45° SP Str Bk Cut 10/8 Ext	76	DR751040

Beany Block Component Codes

Beany Block with reference numbers indicated in **bold** black are available ex-stock. Beany Block with reference numbers indicated in light are manufactured to order. Contact our sales office to discuss your requrements.

Transi	tion Chai	nnels					
Transitions Channels	Length (mm)	Width (mm)	Invert Width (mm)	Depth (mm) Upsteam/Downstream	Invert Depth (mm) Upsteam/Downstream	Unit Weight (kg)	Item Code
205 - 295	500	430	280	205/295	135/205	100	DR870010
295 - 365	500	430	280	295/365	205/275	87	DR870021

	Lind Caps		
E	nd Caps	Unit Weight (kg)	Item Code
20	05 Base End Cap	2.2	DR720025
29	95 Base End Cap	3	DR720015
36	55 Base End Cap	3.8	DR720035

En al C

H Cable Duct Blo	cks	
Cable Duct Blocks	Unit Weight (kg)	Item Code
Cable Duct Block HB	12	DR920040
Cable Duct Block Splay	12	DR920050

Standard Kerb Tra	nsitions	
Standard Kerb Transitions	Unit Weight (kg)	Item Code
Stop End Top Block L/H	87	DR790010
Stop End Top Block R/H	87	DR790011

G Outfalls & Access Covers

Outfalls and Access Covers	Unit Weight (kg)	Item Code
205 Base Outfall	87	DR850041
205 Base Junction	87	DR850051
205 Base Outfall/Junction	87	DR850061
295 Base Outfall	87	DR850010
295 Base Junction	87	DR850020
295 Base Outfall/Junction	87	DR850030
365 Base Outfall	87	DR850070
Gully Outfall 150	227	DR460401
Gully Outfall 225	242	DR460406
HB Universal Access Cover	51	DR915017
45° SP Near Side Access Cover	95	DR915020
45° SP Offside Access Cover	95	DR915025

T

J Cover Plates		
Cover Plates	Unit Weight (kg)	Item Code
Cover Plate Cut 50/11m	16	DR910010
Cover Plate Standard	16	DR910005
* Radius cover plates available	upon request	

Drawing 2 of 8

PE OF UNIT	RADIUS	_	_	θ
		(mm)	(mm)	
:0 - BASE 205, 295 OR 365 :0 - (EXT. & INT. RAD.)	50.0 - 19.1	488	481	89
п п	19.0 - 10.8	488	473	88
а и и	10.7 - 7.7	488	464	87
	7.6 - 6.0	488	457	86
20-BASE 630 (EXT. & INT. RAD.)	50.0 - 19.1	500	493	89
п п	19.0 - 10.8	500	484	88
3 " " "	10.7 - 7.7	500	473	87
П П	7.6 - 6.0	500	463	86
20 - TOP (EXT. RAD.)	50.0 - 19.1	488	481	91
П П	19.0 - 10.8	488	473	92
	10.7 - 7.7	488	464	93
н н	7.6 - 6.0	488	457	94
20 - TOP (INT. RAD.)	50.0 - 19.1	488	481	89
"	19.0 - 10.8	488	473	89
= =	10.7 - 7.7	488	464	87
-	7.6 - 6.0	488	457	86

Drawing 3 of 8

Drawing 4 of 8

Beany[®] Block

Drawing 6 of 8

Drawing 7 of 8

Notes For Beany Block Details Sheets

Drawings 1 to 8

 Mortars shall be;
 A Mortar class 12 cement mortar to BS EN 998-2 for bedding the Top Blocks

ii) Marshalls' M-Flex for bedding Base Block Outfalls onto the Beany Trapped Gully Unit

iii) Marshalls' M-Flex for bedding the sections of the Marshalls' Trapped Gully Unit sections

Concrete bed, haunch and surround shall be;
i) A mix ST1 concrete to BS 8500-1&2 and BS EN 206-1 for Base Blocks used in the normal kerb application

ii) A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Base Blocks used within the carriageway (i.e. where Base Block are used with cover plates and are trafficked)

iii) A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Beany Trapped Gully, Silt Traps, Catch Pits and outfall details

iv) The specification for carrier pipe concrete surround is by others

- 3. Marshalls' vertical joint sealant, M-Seal, shall be applied to all Base Blocks.
- **4.** For Base 630 applications, all Outfalls, Silt Traps and junctions should be formed by a brick Catch Pit structure;

i) The outfall pipe diameter, gradient, depth to invert, depth of trap shall be by others

ii) The internal dimensions of the catch pit shall be 540 wide x 1000 long for Base 630 applications

iii) Corbelled brickwork with a maximum of 22mm steps shall be used to support the Access Cover and Frames

- 5. Beany Block Access Covers and Frames are universal for use in both "nearside" and "offside".
- Movement joint details that fully isolate the Beany Block whilst maintaining restraint shall be provided adjacent to all concrete slabs, even when the slab is covered by other materials.
- Stop End Top Blocks Units are available as left hand (LH) or right hand (RH) for use at transitions to half battered kerbs.
- For Beany Block with cover plate a minimum of 50mm concrete cover (d) and 100mm of surfacing (D) will be required.
- 9. All dimensions are in millimetres.

Specification

Introduction

The following specification covers the complete Beany Block system including ancillary fittings and is compatible with the Standard Detail drawings.

Where the Manual of Contract Documents for Highway Works is used, information for 'Appendix 5/5: Combined Drainage and Kerb Systems' is available on request.

Beany Blocks

- The combined kerb and drainage system shall be Beany Block, manufactured in pre-cast concrete, with the exception of certain fitments as supplied by Marshalls Halifax HX3 9HT in accordance with Standard Detail Sheets.
- 2. The combined kerb and drainage system shall consist of a two part system consisting of top blocks with a symmetrical half battered/ straight backed half battered/or 45° splayed profile* together with base blocks that are 205/295/365/ or 630mm* deep.
- **3.** All components of the Beany Blocks, shall comply with the British Standard BS EN1433, Load Classification E600 and the following:
 - (i) The water inlet aperture shall increase in size towards the inside of the unit with a minimum divergence angle of 5°
 - (ii) The angle of incline of the water inlet aperture shall be at least 30° to the horizontal
 - (iii) Water inlet apertures shall be wholly within individual units and not within 100mm of the end of each unit.
 - (iv) The Top Block shall have an Unpolished Skid Resistance Value
 (USRV) in excess of 70 when tested in accordance with BS 7263:Part
 3
 - (v) The system shall have a minimum of 16,100mm²/m water inlet aperture area
- **4.** The combined kerb and drainage system comprising straight top and base blocks, splay cut top and base blocks for radius use, straight and radius cover plates, cable duct blocks, outfalls, silt traps, access covers, stop end top blocks, end caps and sealant shall be installed to the line and levels indicated in the contract documents and in accordance with the manufacturer's instructions and Standard Details.

Note: * delete as required

Introduction

Installation of the Beany Block Combined Kerb and Drainage System should be carried out in accordance with the Specification and Standard Detail drawings.

The following method of installation is recommended.

Excavation

Sufficient material should be excavated to accommodate Top and Base Units, concrete bedding and haunching. Any 'soft spots' or poorly compacted formation should be made good.

Where Base Units and Cover Plates are to be installed beneath new pavements, the pavements shall be completed to top of roadbase level for flexible construction, or to top of sub-base level for rigid construction, before excavation for the Units commences.

Setting Out

Setting out pins should be accurately located, in accordance with the Contract drawings, with a string line level with the top front corners of the Base Units. Line and level will depend on the kerb upstand. It may be advantageous to locate setting out pins to the rear of the Units to avoid having to lift the Units over the string line.

Plenty of setting out pins should be inserted where Beany Blocks are laid on horizontal curves (e.g. every 5m for radius of 30m) and the appropriate 'splay' Units used for radii of 50m or less.

Note:

The theoretical maximum gap between adjacent Top Block corners when laid to horizontal curves is 4mm and is zero when the radius is:

Type Of Block	Radius For Zero Gap (M)
50/20	30.0
19/11	14.0
10/8	8.7
7/6	6.8

In practice, gaps between Base Blocks are likely to be slightly greater due to laying tolerances and application of vertical joint sealant.

The approximate number of Blocks required for a quarter circle (external radius) i.e. 90° road junction, may be calculated from: Top and Base 3.21 x R Where R = horizontal radius (m) e.g. for Standard Top and Base Blocks laid to a 15m radius,

No. = 3.21 x 15 = 48 Units (24m)

Base Units

Base Units shall be laid to correspond to carriageway channel levels, or where beneath the carriageway, be laid to a straight grade. Starting at the Outfall, i.e. working uphill, the Units should be bedded on to a freshly mixed foundation of the appropriate grade and thickness of concrete (refer to Standard Detail Sheet.). Concrete bed, haunch and surround shall be a standard mix complying with BS 8500-2:

(i) Mix ST1 for kerb installations

(ii) Mix ST4, for base and cover plates in the carriageway

Alternatively, the Units may be bedded on to a layer of cement mortar 10-40mm thick on a previously prepared concrete foundation.

Sufficient M-Seal bituminous mastic jointing compound should be trowelled on to one or both end faces so that the joint will be well sealed when the next Unit is tamped into position. Surplus sealant shall be removed from the inner surface of the Units as work proceeds.

18 litres of M-Seal should be sufficient for the following length of Beany Block:

	M-Seal Requirement	
Base Type	Coverage (lin.m/18l)	
205	90	
295	70	
365	55	
630	35	

Where cutting is necessary, one or two Units shall be cut so that no single Unit is less than 200mm in length. All cutting and trimming of the Units shall be carried out with a concrete saw or disc cutter. Cutting of Base Junctions or Outfall Units is not recommended.

Top Blocks

The string line should be set to the level of the top corner of Units. Again, starting at the Outfall, the Units should be set directly onto a liberal quantity of stiff, cement mortar to completely fill the whole of the joint. Cement mortar shall be Class M12 in accordance with BS EN 998-2. These should be tamped into position close to previously laid Units and the alignment checked. The levels should be checked using the string line and a spirit level. In addition, the general alignment should be checked from all directions as each Block is laid. Any Unit deviating by more than 3mm in 3m from line and level shall be made good by lifting and relaying.

The inside and outside of the joints between Base and Top Units should be pointed and cleaned out with a brush or rag as work proceeds.

Where cutting is necessary, one or two Units shall be cut so that no single Unit is less than 200mm in length. All cutting and trimming of the Units, other than cast iron or steel, shall be carried out with a concrete saw or disc cutter.

Cover Plates

Cover Plates should be bedded on cement mortar to the specified thickness, pointed inside and outside of the joints with the inside of the Base Units being cleaned out as work proceeds. The Cover Plates should be close jointed and the joints sealed with 50mm wide M-Tape. Cover Plates shall be suitably protected before and during installation in order that the protective coating is not damaged.

Where cutting is necessary, one or two plates shall be cut so that no single plate is less than 250mm. Cut or damaged plates shall be renovated in accordance with BS 729: 1971 (1986).

Beany Block Stop End Top Unit

The Beany Block Stop End Top Units should be used at any transitions from Beany Block to half battered kerbs. At the ends of Beany Block runs, these should be bedded onto freshly mixed concrete and kerb installation continued. Where they are to be used at dropped crossing, they should be bedded onto freshly mixed mortar and the dropper kerb and centre stone installation continued.

Beany Block End Caps

Where the Beany Block run does not terminate at an outfall, the base unit shall be sealed using the Beany Block End Cap. This is available for Base 250, 295 and 365 and is formed of galvanised mild steel. The End Cap shall be securely placed against the vertical end of the base unit and haunched with fresh concrete.

Notes

- In order to obtain a 'good line', it is very important to lay the Top Units on the specified thickness of compacted mortar using the string line and Base Units as a guide. Too thin a layer of mortar will not allow sufficient sideways movement of the units to achieve an acceptable alignment.
- 2. It is not necessary for Top and Base Unit vertical joints to line up although there will be more tolerance for adjustment of the Tops, if the joints are close together on curves of 10m radius or less.
- 3. Where Beany Block is laid on or adjacent to existing or proposed concrete slabs, transverse joints shall be formed within the units and haunching adjacent to the slab joints and also longitudinal movement joints between the haunching and the slabs. Where necessary, Top Unit drainage openings shall be protected against the ingress of material during concreting operations by covering with Waterproof Cloth Tape.
- 4 . Outfalls, Silt Traps and Access Covers shall be constructed in accordance with the Standard Detail Sheet using the appropriate type of Base Unit. Units shall be bedded on sufficient M-Flex sealant over a gully pot, Outfall Unit or vertical pipe, to make a watertight joint. Where necessary in situ smooth concrete benching shall be shaped to the full depth of the Base Unit. In Silt Traps, the pipe shall be bedded into mix ST4 concrete which shall be fully compacted to make a watertight seal.
- 5. Cable Duct Blocks shall be bedded on cement mortar in accordance with the Standard Detail Sheet.
- 6. In situ concrete haunching or surround should not be placed until the installed blocks have been inspected and approved by the Engineer. The haunching/surrounding should be carried out as one operation to complete lines of Top and Base Units/Cover Plates in accordance with the Standard Detail Sheet. The top of the concrete surround for Base Units and Cover Plates under new carriageways shall be finished level with the top of the roadbase for flexible construction or top of sub-base level for rigid construction (see Note 10). Construction plant or vehicles crossing the Units shall be suitable in relation to thickness of concrete cover so that damage is not caused to the Units, Cover Plates, concrete bedding or haunching.

 In order to reduce the risk of carriageway surface cracking, special consideration should be given to treatment of flexible surfacing layers above Base Blocks and Cover Plates Type A.
 Example (i)

D = Wearing Course + Base Course Surfacing

Fig. 17 Base Block and Cover Plate Type A

Where the surfacing is less than 100mm or where Blocks are to be laid in an existing carriageway, additional drawings may be required showing vertical staggers at the course interfaces so that the tops of the main trench sides are not less than 100mm from the final carriageway surface. These will vary with the number and thickness of each course as well as the total cover above the Units.

Two typical examples are as shown in fig. 18 and 19.

Example (ii)

Fig. 18 Base Block and Cover Plate detail where D<100mm

Example (iii)

Fig 19 Base Block and Cover Plate detail where D=0 (existing c/way)

 Adjacent carriageway and/or footway construction shall not be commenced within 3 days of any jointing or haunching/surrounding concrete being placed. Base Units, Outfalls, Junctions or Bends not covered by fully bedded Top Units, Cover Plates or covers and frames, shall be adequately supported against loadings imposed by construction traffic.

- 9. Where flexible surfacing is laid greater than 15mm above the bottom of the drainage aperture, it shall be cut and shaped after rolling when partially cooled at each Top Unit, to form a smooth chamfer. A special steel cutting tool is available from Marshalls.
- 10. On completion of the works, the Beany Block System shall be cleaned out by high pressure water jetting (100-150 bar at 200 l/min minimum) and left free from obstructions and all Outfalls and Silt Traps shall be emptied. Top Unit drainage apertures shall be covered by timber boards or other approved method, during jetting operations. The cleaning process shall be repeated where necessary after the completion of any remedial works.
- When used in conjunction with the Manual of Contract Documents for Highway Works, reference should be made to Appendix 5/5.

For works not carried out under the above specification, it may be necessary to clarify cement mortar in accordance with BS EN 998-2 and concrete mix ST1, ST4 and grade C25/30 as specified in BS 8500-2.

 Conventional gully gratings should have a maximum overall depth of 140mm to allow bedding over Base Units (as in Access Cover Type 2, Standard Detail Sheet).

- High capacity system complimenting the Beany Block
 - Ensures continuity of flow between kerb and top units
- Range of concrete top units in variety of colours
- Cast Iron Option provides a solution for the highest loading classification
- Fully compatible with the comprehensive Beany ancillaries

Max-E Channel 🛇

Concrete Drainage System

- Max-E-Channel utilises the same base units as the Beany Block system combining with Max-E-Channel top units to form a linear drainage system which is laid level with the pavement surface. This high flow capacity system offers the choice of top units of various materials and load classifications.
- Max-E-Channel top units come in the following materials:
 Hydraulically pressed concrete
 - Hydraulically pressed reinforced concrete
 - Fabricated galvanised steel
 - Cast iron
- The appropriate top unit is then bedded onto any of the 4 Beany base units being 205mm, 295mm, 365mm and 630mm
- This forms a robust linear drainage system suitable for draining large paved surfaces varying from pedestrian precincts to heavy duty industrial areas and highways.

Versatile

- The various Top Units are easily interchangeable, ensuring easy transition from one type to another where performance requirements vary within the same scheme.
- As expected Max-E-Channel integrates with the Beany Block Top Units creating a unique system capable of providing continuous drainage of the carriageway at road and vehicular crossings.

Max-E-Channel is a high capacity system able to store storm water. Where limitations are placed on outfall capacities, Max-E-Channel can help eliminate the need for storage reservoirs or balancing ponds

Beany to Max-E-Channel (cast iron with holes)

- The introduction of the inlaid Top Units offers all the advantages of this high capacity system yet creates a discrete surface to be incorporated into the most aesthetic of landscape schemes.
- Concrete Top Units are available as standard in a natural pimple finish although other aesthetically pleasing units are also available.

Load Classifications

The Max-E-Channel System is strength tested in accordance with
BS EN 1433:2002 to the following classes:
Reinforced Concrete E600
Cast Iron F900

Access Cover and Frame

A heavy duty cover frame is available for use with Outfalls and Silt Traps to allow for inspection and maintenance.

As Max-E-Channel is compatible with Beany Block, it can be used where continuous drainage of the carriageway is required at vehicular or road crossings

Range of Top Units can be selected in all loading classes, this enables specifier/contractor to use Max-E-Channel in any given scenario

Max-E-Channel System is proven on all types of highway and hard landscape areas

The high inherent strength and durability of the system can:

- Allow complete compaction of surfacing materials adjacent to the channel during construction
- Withstand de-icing salts and freeze/ thaw effects reducing maintenance and increasing service life

Max-E Channel

Special Finishes

Conservation and Granite Max-E-Channel

Max-E Channel units are available in the majority of our granite paving ranges or Marshalls concrete Silver-grey to complement areas of high architectural, historical and scenic value. This product complements Marshalls Silver Grey Conservation and granite Paving Kerb and Edging along with Mistral Concrete Block Paving and Conservation Setts.

Textured Max-E-Channel

An exposed aggregate textured finish on the visible faces of the top units is available providing high aesthetic qualities where the granite aggregate finish is not required.

Components

TOP COMPONENTS

Reinforced Concrete E600

Load classification E600.

250mm long hydraulically pressed reinforced concrete.
Standard natural pimple faced concrete.

Cast Iron F900

- 500mm long cast iron units.
 - Ideal for locations subject to fast moving traffic.
- Load classification F900.

Max-E-Channel Access Cover

- Cast Iron Access Covers and Frames are available for use at outfalls, silt traps and access points.
- A full depth unit compatible with all top units.
- End hinged for ease of access and security.
- Large access opening for the easy emptying of silt traps and outfall sumps.
- Refer to Marshalls Drainage Design Guide for design advice and detailing.
- Load classification F900.

BASE COMPONENTS

All Base Units, Ancillary Items and Transition Units are 500mm long

Base End Caps

Base End Caps are available for 205, 295 and 365 base units. The galvanised steel plates act as permanent formwork to a concrete surround. This is an optional detail to the use of engineering bricks, see the Drainage Design Guide.

FLOW CAPACITY

	MAX- E CHANNEL (Concre	ete or Cast Iron Gratings)	
ref.	d	i	u
Base 205	350	280	135
Base 295	440	350	205
Base 365	510	420	275
Base 630	775	700	555
All	dimensions measured from grating surface	e, pavement should be 5mm above this le	evel.

Max-E Channel

The Max-E-Channel hydraulic data stated in the following tables comprises of flow capacity, in litres per second (I/s) and velocity in metres per second (m/s). This data has been calculated using spatially variable flow design principles.

Max-E-Channel With Cast Iron Top Units

Base 205																
Gradient	Ze	Zero 1 in 1000		1000	1 ir	n 500	1 ir	n 400	1 ir	a 300	1 in	200	1 in	100	1 iı	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
25	18	0.45	21	0.53	23	0.58	24	0.60	26	0.65	29	0.73	34	0.85	42	1.05
50	17	0.43	21	0.53	24	0.60	25	0.63	27	0.68	32	0.80	37	0.93	45	1.13
75	15	0.38	20	0.50	24	0.60	26	0.65	29	0.73	34	0.85	39	0.98	47	1.18
100	14	0.35	20	0.50	24	0.60	26	0.65	30	0.75	37	0.93	42	1.05	50	1.25
125	13	0.33	19	0.48	24	0.60	27	0.68	31	0.78	39	0.98	44	1.10	52	1.30
150	12	0.30	19	0.48	25	0.63	28	0.70	32	0.80	42	1.05	47	1.18	55	1.38
175	10	0.25	18	0.45	25	0.63	28	0.70	33	0.83	44	1.10	49	1.23	57	1.43
200	9	0.23	18	0.45	25	0.63	29	0.73	35	0.85	47	1.18	52	1.30	60	1.50

Base 295																
Gradient	Ze	ero	1 in	1000	1 in	n 500	1 ir	n 400	1 ir	n 300	1 in	200	1 ir	100	1 ir	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
25	32	0.50	38	0.59	42	0.66	44	0.69	46	0.72	52	0.81	61	0.95	75	1.17
50	31	0.48	37	0.58	42	0.66	45	0.70	48	0.75	55	0.86	64	1.00	78	1.22
75	30	0.47	36	0.56	43	0.67	46	0.72	50	0.78	58	0.91	67	1.05	81	1.27
100	29	0.45	36	0.56	43	0.67	46	0.72	52	0.81	62	0.97	71	1.11	85	1.33
125	27	0.42	35	0.55	43	0.67	47	0.73	54	0.84	66	1.03	74	1.16	88	1.38
150	25	0.39	35	0.55	44	0.69	48	0.75	55	0.86	69	1.08	77	1.20	92	1.44
175	23	0.36	34	0.53	44	0.69	49	0.77	57	0.89	72	1.13	80	1.25	94	1.47
200	21	0.33	33	0.52	44	0.69	50	0.78	58	0.91	76	1.19	84	1.31	98	1.53
225	19	0.30	33	0.52	45	0.70	51	0.80	59	0.92	78	1.22	89	1.39	101	1.58
250	17	0.27	32	0.50	45	0.70	51	0.80	61	0.95	82	1.28	91	1.42	105	1.64
275	16	0.25	31	0.48	45	0.70	52	0.81	63	0.98	85	1.33	94	1.47	109	1.70

Base 365																
Gradient	Z	ero	1 in	1000	1 ir	n 500	1 ir	400	1 ir	n 300	1 in	200	1 in	100	1 iı	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
25	46	0.55	54	0.64	59	0.70	61	0.73	65	0.77	72	0.86	84	1.00	104	1.24
50	44	0.52	53	0.63	59	0.70	62	0.74	67	0.80	76	0.90	88	1.05	108	1.29
75	42	0.50	52	0.62	60	0.71	63	0.75	69	0.82	80	0.95	92	1.10	112	1.33
100	40	0.48	51	0.61	60	0.71	64	0.76	70	0.83	84	1.00	95	1.13	116	1.38
125	39	0.46	51	0.61	60	0.71	65	0.77	72	0.86	88	1.05	99	1.18	120	1.43
150	37	0.44	50	0.60	61	0.73	66	0.79	74	0.88	92	1.10	103	1.23	124	1.48
175	35	0.42	49	0.58	61	0.73	67	0.80	76	0.90	94	1.12	107	1.27	127	1.51
200	33	0.39	49	0.58	62	0.74	68	0.81	78	0.93	98	1.17	110	1.31	131	1.56
225	31	0.37	48	0.57	62	0.74	69	0.82	80	0.95	102	1.21	114	1.36	135	1.61
250	29	0.35	47	0.56	62	0.74	70	0.83	81	0.96	108	1.29	118	1.40	138	1.64
275	27	0.32	46	0.55	63	0.75	71	0.85	83	0.99	110	1.31	122	1.45	142	1.69
300	25	0.30	45	0.54	63	0.75	72	0.86	85	1.01	114	1.36	126	1.50	146	1.74
325	24	0.29	45	0.54	63	0.75	73	0.87	87	1 04	118	1 40	130	1 55	150	1 79

Base 630																
Gradient	Ze	ero	1 in	1000	1 in	500	1 in	400	1 in	n 300	1 in	200	1 in	100	1 ir	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	122	0.67	142	0.78	156	0.85	162	0.89	172	0.94	191	1.04	224	1.22	277	1.51
100	116	0.63	140	0.77	157	0.86	165	0.90	177	0.97	202	1.10	235	1.28	288	1.57
150	110	0.60	138	0.75	158	0.86	168	0.92	182	0.99	213	1.16	246	1.34	299	1.63
200	105	0.57	136	0.74	159	0.87	171	0.93	188	1.03	224	1.22	257	1.40	310	1.69
250	100	0.55	133	0.73	160	0.87	173	0.95	194	1.06	234	1.28	267	1.46	321	1.75
300	95	0.52	130	0.71	162	0.89	176	0.96	199	1.09	245	1.34	278	1.52	332	1.81
350	90	0.49	128	0.70	163	0.89	179	0.98	205	1.12	256	1.40	289	1.58	343	1.87
400	84	0.46	127	0.69	164	0.90	182	0.99	210	1.15	267	1.46	300	1.64	354	1.93
450	78	0.43	125	0.68	165	0.90	184	1.01	215	1.17	278	1.52	311	1.70	365	1.99
500	72	0.39	123	0.67	166	0.91	187	1.02	220	1.20	289	1.58	322	1.76	376	2.05
550	67	0.37	120	0.66	167	0.91	190	1.04	226	1.24	300	1.64	333	1.82	387	2.11
600	62	0.34	118	0.64	168	0.92	193	1.05	231	1.26	311	1.70	344	1.88	397	2.17

Max-E-Channel With Concrete Top Units

Z	ero	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 iı	n 50
l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
9	0.38	11	0.46	12	0.50	13	0.54	14	0.58	17	0.71	19	0.79	24	1.00
7	0.29	10	0.42	13	0.54	14	0.58	16	0.67	19	0.79	22	0.92	26	1.08
6	0.25	10	0.42	13	0.54	14	0.58	17	0.71	22	0.92	24	1.00	29	1.21
5	0.21	9	0.38	13	0.54	15	0.63	18	0.75	24	1.00	27	1.13	31	1.29
	Z l/s 9 7 6 5	Zero //s m/s 9 0.38 7 0.29 6 0.25 5 0.21	Zero 1 in l/s m/s l/s 9 0.38 11 7 0.29 10 6 0.25 10 5 0.21 9	Zero 1 in 1000 I/s m/s I/s m/s 9 0.38 11 0.46 7 0.29 10 0.42 6 0.25 10 0.42 5 0.21 9 0.38	Zero 1 in 1000 1 in I/s m/s I/s m/s I/s 9 0.38 11 0.46 12 7 0.29 10 0.42 13 6 0.25 10 0.42 13 5 0.21 9 0.38 13	Zero 1 in 1000 1 in 500 I/s m/s I/s m/s 9 0.38 11 0.46 12 0.50 7 0.29 10 0.42 13 0.54 6 0.25 10 0.42 13 0.54 5 0.21 9 0.38 13 0.54	Zero 1 in 1000 1 in 500 1 in 1000 I/s m/s I/s m/s I/s m/s I/s 9 0.38 11 0.46 12 0.50 13 7 0.29 10 0.42 13 0.54 14 6 0.25 10 0.42 13 0.54 14 5 0.21 9 0.38 13 0.54 15	Zero 1 in 1000 1 in 500 1 in 400 I/s m/s I/s m/s I/s m/s 9 0.38 11 0.46 12 0.50 13 0.54 7 0.29 10 0.42 13 0.54 14 0.58 6 0.25 10 0.42 13 0.54 14 0.58 5 0.21 9 0.38 13 0.54 15 0.63	Zero 1 in 1000 1 in 500 1 in 400 1 in 1000 l/s m/s l/s m/s l/s m/s l/s m/s l/s m/s l/s l/s m/s l/s m/s l/s l/s m/s l/s l/s <td>Zero 1 in 1000 1 in 500 1 in 400 1 in 300 l/s m/s l/s m/s l/s m/s l/s m/s l/s m/s l/s m/s m/s</td> <td>Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 300 l/s m/s l/s l/s m/s l/s l/s<</td> <td>Zero 1 in 1000 1 in 500 1 in 400 1 in 300 1 in 200 I/s m/s I/s I/s</td> <td>Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 1/s m/s m/s 1/s m/s 1/s m/s <td< td=""><td>Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 l/s m/s <td< td=""><td>Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 <th< td=""></th<></td></td<></td></td<></td>	Zero 1 in 1000 1 in 500 1 in 400 1 in 300 l/s m/s l/s m/s l/s m/s l/s m/s l/s m/s l/s m/s m/s	Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 300 l/s m/s l/s l/s m/s l/s l/s<	Zero 1 in 1000 1 in 500 1 in 400 1 in 300 1 in 200 I/s m/s I/s I/s	Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 1/s m/s m/s 1/s m/s 1/s m/s m/s <td< td=""><td>Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 l/s m/s <td< td=""><td>Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 <th< td=""></th<></td></td<></td></td<>	Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 l/s m/s m/s <td< td=""><td>Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 <th< td=""></th<></td></td<>	Zero 1 in 100 1 in 500 1 in 400 1 in 300 1 in 200 1 in 100 1 in 100 <th< td=""></th<>

Base 295																
Gradient	Z	ero	1 in 1000		1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 iı	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
25	22	0.46	26	0.54	29	0.60	31	0.65	33	0.69	37	0.77	44	0.92	54	1.13
50	20	0.42	26	0.54	30	0.63	32	0.67	35	0.73	41	0.85	47	0.98	57	1.19
75	18	0.38	25	0.52	30	0.63	33	0.69	37	0.77	45	0.94	51	1.06	61	1.27
100	17	0.35	24	0.50	31	0.65	34	0.71	38	0.79	48	1.00	55	1.15	65	1.35
125	15	0.31	23	0.48	31	0.65	35	0.73	40	0.83	52	1.08	58	1.21	68	1.42
150	13	0.27	23	0.48	31	0.65	35	0.73	42	0.88	56	1.17	62	1.29	72	1.50
175	11	0.23	22	0.46	32	0.67	36	0.75	44	0.92	59	1.23	66	1.38	76	1.58

Dase 505																
Gradient	Ze	ero	1 in 1	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
25	35	0.51	41	0.60	46	0.68	47	0.69	50	0.74	56	0.82	66	0.97	81	1.19
50	33	0.49	40	0.59	46	0.68	48	0.71	52	0.76	60	0.88	70	1.03	85	1.25
75	31	0.46	39	0.57	46	0.68	49	0.72	54	0.79	64	0.94	74	1.09	89	1.31
100	29	0.43	39	0.57	47	0.69	50	0.74	56	0.82	68	1.00	78	1.15	93	1.37
125	27	0.40	38	0.56	47	0.69	51	0.75	58	0.85	73	1.07	82	1.21	98	1.44
150	25	0.37	37	0.54	47	0.69	52	0.76	60	0.88	77	1.13	86	1.26	102	1.50
175	23	0.34	36	0.53	48	0.71	53	0.78	62	0.91	81	1.19	90	1.32	106	1.56
200	21	0.31	35	0.51	48	0.71	54	0.79	66	0.97	85	1.25	94	1.38	108	1.59
225	19	0.28	35	0.51	49	0.72	55	0.81	67	0.99	89	1.31	98	1.44	114	1.68

Base 630																
Gradient	Ze	ro	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	n 50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	108	0.65	126	0.75	139	0.83	145	0.87	154	0.92	172	1.03	201	1.20	249	1.49
100	102	0.61	124	0.74	141	0.84	148	0.89	160	0.96	184	1.10	213	1.28	261	1.56
150	96	0.57	123	0.74	142	0.85	151	0.90	166	0.99	195	1.17	224	1.34	272	1.63
200	90	0.54	120	0.72	143	0.86	154	0.92	171	1.02	207	1.24	236	1.41	284	1.70
250	83	0.50	117	0.70	144	0.86	157	0.94	177	1.06	218	1.31	248	1.49	295	1.77
300	79	0.47	115	0.69	145	0.87	160	0.96	183	1.10	230	1.38	259	1.55	307	1.84
350	73	0.44	113	0.68	146	0.87	163	0.98	188	1.13	241	1.44	271	1.62	318	1.90
400	67	0.40	110	0.66	148	0.89	166	0.99	194	1.16	253	1.52	282	1.69	330	1.98
450	62	0.37	108	0.65	149	0.89	168	1.01	200	1.20	265	1.59	294	1.76	341	2.04
500	56	0.34	106	0.63	150	0.90	171	1.02	205	1.23	276	1.65	305	1.83	353	2.11

Theoretical Outfall Capacities			
Outfall Type	Outlet Pipe Diameter (mm)	l/s	m/s
Max-E-Channel Outfall with Base 205	150	36	3.32
Max-E-Channel Outfall with Base 295	150	38	3.52
Max-E-Channel Outfall with Base 365	150	40	3.67
Max-E-Channel Outfall with Base 205	225	82	3.40
Max-E-Channel Outfall with Base 295	225	87	3.60
Max-E-Channel Outfall with Base 365	225	91	3.75

Max-E Channel Component Codes

А	Top Units						
То	p Units	Loading	Length (mm)	Width (mm)	Depth (mm)	Unit Weight (kg)	Item Code
Ca	st Iron Grate	F900	500	430	165	62	DR975020
Sta	andard Grey Reinforced Concrete Top	E600	250	430	170	39	DR975810
Co	nservation Reinforced Top	E600	250	430	170	36	DR975830

B Constant Depth Channels

Constant Depth Channels	Length (mm)	Width (mm)	lnvert Width (mm)	Depth (mm)	Invert Depth (mm)	Unit Weight (kg)	Item Code
Channel 205	500	430	280	205	135	70	DR720021
Channel 295	500	430	280	295	205	85	DR720010
Channel 365	500	440	280	365	275	96	DR720030
Channel 630	500	440/490	280/360	630	555	110	DR720045

C Transition Channels

Transition Channels	Length (mm)	Width (mm)	Invert Width (mm)	Depth (mm) Upsteam/ Downstream	Invert Depth (mm) Upsteam/ Downstream	Unit Weight (kg)	Item Code
205 - 295	500	430	280	205/295	135/205	100	DR870010
295 - 365	500	430	280	295/365	205/275	87	DR870021

D Radial Channels

Radial Base Channels	Unit Weight (kg)	Item Code
205 Base 50/20m	69	DR808010
205 Base 19/11m	69	DR808030
205 Base 10/8m Cut	69	DR808040
205 Base 7/6m Cut	69	DR808040
205 Base 45° External Corner	174	DR900210
295 Base 50/20m	79	DR800020
295 Base 19/11m	79	DR800030
295 Base 10/8m Cut	79	DR800040
295 Base 7/6m Cut	79	DR800050
365 Base 50/20m Cut	95	DR820010
365 Base 19/11m Cut	95	DR820030
365 Base 10/8m Cut	95	DR820040
365 Base 7/6 Cut	95	DR820050
630 Base 50/20m	105	DR825020
630 Base 19/11m Cut	105	DR825030
630 Base 10/8m Cut	105	DR825040
630 Base 7/6m Cuit	105	DR825050

G

More radius and corner units can be made available on request

С

А

В

Max-E Channel Component Codes

Е	End Caps		
En	d Caps	Unit Weight (kg)	Item Code
205	5 Base End Cap	2.2	DR7200250
295	5 Base End Cap	3	DR7200150
365	5 Base End Cap	3.8	DR7200350

Beany Block to Max-E Channel

Beany can be used with Max-E Channel where the drainage run continues but the kerb line finishes. A smooth channel invert ensures undisturbed flow

95 Base End Cap	3	DR/200150
65 Base End Cap	3.8	DR7200350
Outfalls & Access Covers		
outfalls & Access Covers	Unit Weight (kg)	Item Code
Jav-E Full Depth Access Cover & Frame	85	DR9800150

242 277

DR4604060

DR4604010

Cover Plates	

Cover Plates	Unit Weight (kg)	Item Code		
Cover Plate Standard	17	DR910005		
Cover Plate Cut 50/11m	16	DR910010		

Max-E-Channel with reference numbers indicated in **bold** black are available ex-stock. Max-E-Channel with reference numbers indicated in light are manufactured to order. Contact our sales office to discuss your requrements.

F

Gully Outfall 225

Gully Outfall 150

Drawing 2 of 4

all Using Marshalls Gully Outfall	vert Depth From Carriageway Level (Mm)	150 Ø Outfall 225 Ø Outfall
Outfall Using	Outfall Pipe Invert Depth Fro	Reany Rase

Cross Section

738 828 898

701 791 861

205 295 365

Max-E Channel

Drawing 3 of 4

Drawing 4 of 4

Notes For Max-E-Channel

Drawings 1 to 4

1. Mortars shall be;

i) A Mortar class 12 cement mortar to BS EN 998-2 for bedding of the Concrete Top Units for applications up to Load Classification D400 to BS EN 1433

ii) Marshalls' M-Bond epoxy mortar for bedding of Cast Iron Top Units and reinforced concrete Top Units for Load Classification E600 and F900

iii) Marshalls' M-Flex for bedding Base Block Outfalls onto the Beany Trapped Gully Unit

iv) Marshalls' M-Flex for bedding the sections of the Marshalls' Trapped Gully Unit sections

2. Concrete bed, haunch and surround shall be;

i) A C25/30 concrete to BS 8500-1&2 and BS EN 206-1 for applications up to Load Classification F900 to BS EN 1433

ii) Reinforcement details for Base 630 E600 and F900 applications only are as indicated

iii) A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Beany Trapped Gully, Silt Traps, Catch Pits and outfall details

iv) The specification for carrier pipe concrete surround is by others

- 3. Marshalls' vertical joint sealant, M-Seal, shall be applied to all Base Blocks.
- **4.** For Base 630 applications, all Outfalls, Silt Traps and junctions should be formed by a brick Catch Pit structure;

i) The outfall pipe diameter, gradient, depth to invert, depth of trap shall be by others

ii) The internal dimensions of the catch pit shall be 540 wide x 1000 long for Base 630 applications

iii) Corbelled brickwork with a maximum of 22mm steps shall be used to support the Access Cover and Frames

- 5. Movement joint details that fully isolate the Max-E-Channel whilst maintaining restraint shall be provided adjacent to all concrete slabs, even when the slab is covered by other materials.
- 6. When used in conjunction with the Beany Block system, Max-E-Channel base units are the same as Beany Block Bases.
- 7. All dimensions are in millimetres.

Specification

Introduction

The following specification covers the complete Max-E-Channel system including ancillary fittings and is compatible with the Standard Detail sheets.

Where the Manual of Contract Documents for Highway Works is used, information for "Appendix 5/6: Linear Drainage Systems" is available on request.

Max-E-Channel

- The linear drainage system shall be Max-E-Channel, manufactured in pre-cast concrete, with the exception of certain fitments of cast iron or galvanised steel as supplied by Marshalls, Halifax HX5 9HT in accordance with Standard Detail Sheets.
- The linear drainage system shall consist of a two part system consisting of top units of plain concrete/reinforced concrete/ galvanised mild steel/cast iron* together with base units that are 205/295/365/630mm* deep. The overall width of the system is not less than 430mm.
- **3.** All components of the Max-E-Channel system, shall comply with the British Standard BS EN1433, Load Classification as follows:

(i) Reinforced concrete top units to E600*

(ii) Cast iron top units to F900*

- 4. The system shall have a minimum of 11,200mm²/m water inlet aperture area.
- When installed, the minimum depth of construction above the top of the base unit to the drained area surface level shall be not less than 150mm.
- 6. The linear drainage system comprising straight top and base units, outfalls, silt traps, access covers, junctions, end caps and sealant shall be installed to the line and levels indicated in the contract documents and in accordance with the manufacturer's instructions and Standard Details

Note: * delete as required

Introduction

Installation of the Max-E-Channel Linear Drainage System should be carried out in accordance with the Specification and Standard Detail Sheets. The following method of installation is recommended.

Excavation

Sufficient material should be excavated to accommodate Top and Base Units, concrete bedding and haunching, any 'soft spots' or poorly compacted formation should be made good.

Setting Out

Setting out pins should be accurately located, with a string line level with the top front corners of the Base Units. Pins can be located to the rear of the Units to avoid having to lift the Units over the string line.

Base Units

Starting at the Outfall, i.e. working uphill, the Units should be bedded on to a freshly mixed foundation of the appropriate grade and thickness of concrete (refer to Standard Detail Sheet.).

Concrete bed, haunch and surround shall be:

i) A C25/30 concrete to BS 8500-1&2 and BS EN 206-1 for applications up to Load Classification F900 to BS EN 1433

ii) Reinforcement details for Base 630 application E600 and F900 ONLY are as indicated

iii) A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Max-E-Channel Trapped Gullies, Silt Traps, Catch Pits and outfall details

iv) The specification for carrier pipe concrete surround is by others

Alternatively, the Units may be bedded on to a layer of cement mortar 10-40mm thick on a previously prepared concrete foundation.

Sufficient M-Seal bituminous mastic jointing compound should be trowelled on to one or both end faces so that the joint will be well sealed when the next Unit is tamped into position. Surplus sealant shall be removed from the inner surface of the Units as work proceeds.

18 litres of M-Seal should be sufficient for the following length of Max-E-Channel:

M-Seal Requirement								
Base Type	Coverage (m/18l)							
205	90							
295	70							
365	55							
630	35							

Where cutting is necessary, one or two Units shall be cut so that no single Unit is less than 200mm in length. All cutting and trimming of the Units shall be carried out with a concrete saw or disc cutter. Cutting of Base Junctions or Outfall Units is not recommended.

At the termination of Max-E-Channel runs not located at outfalls, the base units shall be closed using galvanised steel end caps as detailed in the Standard Detail Sheets.

Top Units

The string line should be set to the level of the top of the units.

Again, starting at the Outfall, the Units should be set directly onto a liberal quantity of stiff, cement mortar (or M Bond epoxy mortar where specified) to completely fill the whole of the joint. Cement mortar shall be Class 12 in accordance with BS EN 998-2. These should be tamped into position close to previously laid Units and the alignment checked. The levels should be checked using the string line and a spirit level. In addition, the general

alignment should be checked from all directions as each unit is laid. Surplus mortar shall be removed from the units as work proceeds.

Top Units shall be laid with the top of the unit 5mm below the final pavement level.

The inside and outside of the joints between Base and Top Units should be pointed and cleaned out with a brush or rag as work proceeds.

Notes:

- In order to obtain a 'good line', it is very important to lay the Top Units on the specified thickness of compacted mortar using the string line and Base Units as a guide. Too thin a layer of mortar will not allow sufficient sideways movement of the units to achieve an acceptable alignment.
- 2. It is not necessary for Top and Base Unit vertical joints to line up.
- 3. Where Max-E-Channel is laid on or adjacent to existing or proposed concrete slabs, transverse joints shall be formed within the units and haunching adjacent to the slab joints and also longitudinal movement joints between the haunching and the slabs. Where necessary, Top Unit drainage apertures shall be protected against the ingress of material during concreting operations.
- 4. Outfalls, Silt Traps and Access Covers shall be constructed in accordance with the Standard Detail Sheet using the appropriate type of Base Unit. Units shall be bedded on sufficient M-Flex sealant over a gully pot, Outfall Unit or vertical pipe, to make a watertight joint. Where necessary in-situ concrete benching shall be shaped to the full depth of the Base unit. In Silt Traps, the pipe shall be bedded into mix ST4 concrete which shall be fully compacted to make a watertight seal.
- 5. In situ concrete haunching or surround should not be placed until the installed units have been inspected and approved by the Engineer. The haunching/surrounding should be carried out as one operation to complete lines of Top and Base Units in accordance with the Standard Detail Sheet.
- 6. Adjacent carriageway and/or footway construction shall not be commenced within 3 days of any jointing or haunching/surrounding concrete being placed. Base Units, Outfalls or Junctions not covered by fully bedded Top Units or covers and frames, shall be adequately supported against loadings imposed by construction traffic.
- 7. On completion of the works, the Max-E-Channel System shall be cleaned out by high pressure water jetting (100-150 bar at 200 I/ min minimum) and left free from obstructions and all Outfalls and Silt Traps shall be emptied. Top Unit drainage apertures shall be covered by timber boards or other approved method, during jetting operations. The cleaning process shall be repeated where necessary after the completion of any remedial works.
- 8. Installation operations should be discontinued if weather conditions are such that the performance of the Max-E-Channel may be jeopardised.

Installation should not be undertaken when the temperature is below 3° C on a falling thermometer and below 1° C on a rising thermometer.

 All necessary Personal Protective Equipment (PPE) should be worn on site, as the site rules dictate. Goggles, ear protection, dust masks and protective footwear must always be worn whenever cutting operations are undertaken.

Mini Beany, Blackpool

- Ideal Choice for areas of heavy or abnormal heavy wheel loads
- Choice of top finishes to complement the Urban Project to the Rural Project

NSSPlus 010 190

Mini Beany®

• Low to Medium Capacity CK&D system

• Evolved from the successful Beany Block

• Two Piece Concrete System available in

standard or textured finishes

Combined Kerb and Drainage System

Mini Beany® Top Blocks

- Mini Beany carries the British Standard Kitemark
- Top Blocks available in 500mm & 1000mm lengths
- 500mm long radius top blocks are available
- Half battered profile suitable for use with tarmac, in situ concrete and concrete block paving
- Reduces mechanical lifts per metre from 2 to 1 for top unit.

Mini Beany[®] Pressed Base

- Increased strength of channel bases, resulting in improved installation with no requirement for front haunching, just bedding and backing concrete
- Available in 1000mm lengths in four invert depths
- 500mm long radius bases are available
- Fully compatible with Traffic drain and the current range of trapped outfalls and ancillary items
- Quicker to install with significant savings on installation.

Special Finishes

Conservation Mini Beany

A silver-grey coarse textured finish top unit, manufactured with granite aggregate, complements perfectly areas of high architectural, historical and scenic value. This product profile complements Conservation Kerb 205 x 255mm. Marshalls Silver Grey Conservation Paving, Kerb and Edging along with Mistral Concrete Block Paving and Conservation Setts, are ideally suited to complement this surface finish.

Conservation Mini Beany (205 x 255mm) is available with coarse texture to two faces and is available from stock.

Excellent slip/skid resistance

Half battered kerb width Top Block 1000mm long (range of Top Units available)

> Steeply inclined and divergent inlet aperture ensures efficient water interception and freedom from blockages

Highly resistant to de-icing salts, anti-freeze and other noxious pollutants

Fully compatible with Traffic Drain, Beany Block, Max-E-Channel, Birco 150 and Half Battered Kerbs

Two-part system allowing easy installation whilst ensuring level inverts and allowing for future resurfacing

1000mm long Base Channel (range of depths avilable) avana

www.marshalls.co.uk/commercial/linear-drainage

Engineering Benefits

Mini Beany Versatility

Mini Beany is totally compatible with the rest of the Marshalls range of commercial linear drainage systems.

The addition of traffic drain further extends the use of the Mini Beany system, allowing for flows at locations such as across junctions, entrances or at nosing – in fact anywhere that requires vehicle access.

Mini Beany Pedestrian Drop Crossing Detail

Mini Beany drop crossing detail now has centre stones with inlet holes to allow drainage at drop crossing applications. Mini Beany Droppers and centre stones are for use at pedestrian crossings only. A more robust detail using cover plates and standard kerb products or Traffic Drain should be used for vehicle crossings.

Mini Beany Pedestrian Drop Crossing Detail

Mini Beany to Traffic Drain

Mini Beany can be used with Traffic Drain where the drainage run continues but the kerb line finishes. A smooth channel invert ensures uninterrupted flow.

Mini Beany to Traffic Drain

Mini Beany to Cover Plate

The system has been specifically designed so where base units and cover plates are used to carry flows under carriageways or vehicular crossings, a minimum of 150mm of road material can be laid above the units to prevent damage and reflective carriageway surface cracking.

Mini Beany to Cover Plate

Cost Advantages

Mini Beany is ideal where specific problems would arise with conventional drainage methods for example:

- Where there is insufficient fall to the outfall point.
- Where, in flat areas, either numerous, closely spaced gullies or false falls would be required in the carriageway.
- Where long gully connections would be needed.
- Where surface water drainage pipes would conflict with service mains and cables.
- Where ponding would occur at low points.
- Where traffic safety and control measures would be required when widening existing carriageway.

Mini Beany is likely to be more economical than conventional kerb/point drainage where carriageways have crossfall, few vehicular crossings or where a surface water drain would be required for highway drainage purposes. Cost savings have been significant on highway and non-highway schemes incorporating lengths of the Mini Beany System. For comparison purposes, conventional methods should include the following as appropriate:

- Surface water drain (including reinstatement).
- Gullies.
- Gully connections.
- Manholes.
- Kerbs.
- Channel Blocks.
- Extra 200mm width of footway plus a small amount of carriageway.
- Service diversions.
- Traffic safety and control (existing carriageways).

Conservation Mini Beany

- A silver grey coarse textured finish top unit, manufactured with granite aggregate, complements perfectly areas of high architectural, historical and scenic value. This product complements Marshalls Silver Grey Conservation Paving Kerb and Edging along with Mistral Concrete Block Paving and Conservation Setts. Beany Block is also available in Conservation.
- Conservation Mini Beany is available with coarse texture to 2 or 3 faces and manufactured to order for an agreed quantity.

Construction Savings

- Mini Beany System combines water interception and transportation in one system. This minimises or eliminates the need for carrier drains, gullies and manholes, reducing construction costs and saving time.
- Simple two-part system straightforward to design and detail, reducing design times and cost. Easy to set out and straightforward to install.
- The overall construction period can be reduced as carriageway materials may be laid in a continuous sequence. Unlike laying conventional drainage, excavations are kept to a minimum without exposing the formation and sub-base surfaces to possible periods of adverse weather.
- Underground cables and services can be avoided so contractual/ insurance claims are likely to be much less than when laying conventional drainage.

Low Maintenance

 Mini Beany will require periodic inspection and emptying of Silt Traps, Outfalls and Catchpits. The number of Silt Traps and Outfalls are likely to be fewer than in a conventional drainage systems*. If a blockage does occur, it can easily be located and rectified by rodding or jetting from an access point or through a top block aperture adjacent to the blockage.

*It is reccommended to have an access point at the head of the run and every 50m and a Silt Trap every 100m

Components

TOP COMPONENTS

Top Blocks

Half Battered, 45° Splayed, and Conservation Bullnose Tops in 500mm & 1000mm lengths.

BASE COMPONENTS

Base Channels are 1000mm long with half base channels being 500mm long.

Base 260

BASE CHANNELS

Dropper and Centres

OUTFALLS

High Capacity Outfall

Comprising a two section concrete trapped Outfall, Silt Box and cast iron Beany Access Cover. Outlet for 225mm or 150mm diameter pipework with universal seals. The bottom two

Base 210

sections of the outfall can be orientated in any direction allowing flexibility of pipework layout. Cut-out panels are incorporated in the Silt Box to allow Mini Beany runs from both sides.

Note: Silt Box and Beany cast iron Access Cover and Frame available separately.

Inline Side Outlet Outfall

Comprising a two section concrete trapped Outfall, with cast iron Mini Beany Access Cover and Frame. Side outlet for 150mm diameter pipework with universal seal. Cut-out panels to allow Mini Beany Runs from both sides.

Access Cover and Frames Half Battered, Conservation Bullnose Access Covers (nearside or offside

hinged) 500mm in length. All now

lockable for improved security.

Base 310

Note: Cast iron Access Cover and Frame available separately.

End Cap

Inline End Outlet Outfall

Comprising a two section concrete trapped Outfall, with cast iron Mini Beany Access Cover and Frame. End outlet for 150mm diameter pipework with universal seal. Cut-out panel to allow Mini Beany run from one side only.

Note: Cast iron Access Cover and Frame available separately.

Silt Box

Transition between Mini Beany and Beany Block or Max-E-Channel systems. If required, it can also be used at the location of silt traps in the Mini Beany run. It has cut-out panels to allow for Mini Beany runs from two sides, or, Mini Beany and Beany Block from each side. There is a hole in the base of the Silt Box.

Base End Caps And Cap Outlets

Base end caps and cap outlets are available for 210, 260, 310 and 360 base units. The galvanised steel plates act as permanent formwork to a concrete surround. This is an optional detail to the use of engineering bricks.

Components

RADIUS BLOCKS

Top Components	Radius	Unit Reference
	Greater than 56m	1000mm
	30.1 - 56 External	500mm
	30.1 - 56 Internal	500mm
	30.0 - 10.0 External	30/10 External
	30.0 - 10.0 Internal	30/10 Internal
	9.9 - 6.0 External	9/6 External
	9.9 - 6.0 Internal	9/6 Internal
	45° Bend External	45° External
	45° Bend Internal	45° Internal
Base Components	Radius	Unit Reference
	Greater than 56m	1000mm
	30.1 - 56 External or Internal	500mm
	30.0 - 10.0 External or Internal	30/10
	9.9 - 6.0 External or Internal	9/6
	45° Bend External or Internal	45° Bend

Cover Plates

Galvanised steel Cover Plates for use with Mini Beany Base Units where a Top Unit is not required, such as drop crossings.

FLOW CAPACITY

Note: 1. Flow figures, I/s, are derived from spatially varied flow work carried out by HR Wallingford

The Mini Beany hydraulic data stated in the following tables comprises of flow capacity, in litres per second (I/s) and velocity in metres per second (m/s). This data has been calculated using spatially variable flow design principles.

Race 210																
Gradient	Z	ero	1 in	1000	1 in	n 500	1 in	400	1 ir	300	1 in	200	1 in	100	1 ii	n 50
Length(m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
10	6	0.38	7	0.44	7	0.44	8	0.50	8	0.50	9	0.56	9	0.56	13	0.81
20	6	0.38	7	0.44	7	0.44	8	0.50	8	0.50	10	0.63	11	0.69	14	0.88
30	5	0.31	7	0.44	8	0.50	8	0.50	9	0.56	10	0.63	12	0.75	14	0.88
40	5	0.31	6	0.38	8	0.50	8	0.50	9	0.56	11	0.69	13	0.81	15	0.94
50	5	0.31	6	0.38	8	0.50	9	0.56	9	0.56	11	0.69	13	0.81	15	0.94
75	4	0.25	6	0.38	8	0.50	9	0.56	10	0.63	13	0.81	14	0.88	17	1.06
100	3	0.19	6	0.38	8	0.50	9	0.56	11	0.69	14	0.88	17	1.06	19	1.19

Base 260																
Gradient	Z	ero	1 in	1000	1 in	n 500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	n 50
Length(m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
10	10	0.42	11	0.46	12	0.50	13	0.54	14	0.58	15	0.63	17	0.71	22	0.92
20	9	0.38	11	0.46	12	0.50	13	0.54	14	0.58	16	0.67	18	0.75	22	0.92
30	9	0.38	11	0.46	12	0.50	13	0.54	14	0.58	16	0.67	18	0.75	24	1.00
40	9	0.38	11	0.46	13	0.54	13	0.54	14	0.58	17	0.71	19	0.79	24	1.00
50	8	0.33	11	0.46	13	0.54	13	0.54	15	0.63	17	0.71	20	0.83	25	1.04
75	8	0.33	10	0.42	13	0.54	14	0.58	16	0.67	19	0.79	22	0.92	26	1.08
100	7	0.29	10	0.42	14	0.58	14	0.58	16	0.67	21	0.88	26	1.08	29	1.21
150	5	0.21	9	0.38	15	0.63	15	0.63	18	0.75	24	1.00	27	1.13	31	1.29

Base 310																
Gradient	Z	ero	1 in	1000	1 in	500	1 in	n 400	1 in	a 300	1 in	200	1 in	100	1 iı	n 50
Length(m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
10	13	0.42	16	0.52	17	0.55	18	0.58	18	0.58	20	0.65	24	0.77	30	0.97
20	13	0.42	15	0.48	17	0.55	18	0.58	19	0.61	21	0.68	25	0.81	30	0.97
30	13	0.42	15	0.48	17	0.55	18	0.58	19	0.61	21	0.68	25	0.81	32	1.03
40	13	0.42	15	0.48	17	0.55	18	0.58	19	0.61	22	0.71	26	0.84	32	1.03
50	12	0.39	15	0.48	17	0.55	18	0.58	20	0.65	23	0.74	27	0.87	33	1.06
75	11	0.35	15	0.48	17	0.55	19	0.61	21	0.68	25	0.81	28	0.90	34	1.10
100	10	0.32	14	0.45	17	0.55	19	0.61	22	0.71	26	0.84	30	0.97	36	1.16
150	9	0.29	14	0.45	18	0.58	20	0.65	23	0.74	30	0.97	34	1.01	39	1.26
200	7	0.23	13	0.42	18	0.58	21	0.68	25	0.81	33	1.06	37	1.19	43	1.39

Base 360																
Gradient	Z	ero	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 iı	n 50
Length(m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
25	18	0.46	21	0.54	23	0.59	24	0.62	25	0.64	28	0.72	33	0.85	40	1.03
50	17	0.44	20	0.51	23	0.59	24	0.62	26	0.67	30	0.77	35	0.90	42	1.08
75	16	0.41	20	0.51	23	0.59	25	0.64	27	0.69	32	0.82	36	0.92	44	1.13
100	15	0.38	19	0.49	23	0.59	25	0.64	28	0.72	34	0.87	38	0.97	46	1.18
125	14	0.36	19	0.49	23	0.59	25	0.64	29	0.74	35	0.90	40	1.03	48	1.23
150	13	0.33	19	0.49	24	0.62	26	0.67	30	0.77	37	0.95	42	1.08	50	1.28
175	12	0.31	18	0.46	24	0.62	26	0.67	31	0.79	39	1.00	44	1.13	52	1.33
200	11	0.28	18	0.46	24	0.62	27	0.69	32	0.82	41	1.05	46	1.18	54	1.38
225	10	0.26	18	0.46	24	0.62	27	0.69	32	0.82	43	1.10	48	1.23	55	1.41
250	9	0.23	17	0.44	24	0.62	28	0.72	33	0.85	45	1.15	50	1.28	57	1.46
275	8	0.21	17	0.44	25	0.64	28	0.72	34	0.87	47	1.21	51	1.31	59	1.51

Theoretical Outfall Capacities							
Outfall Type	Outlet Pipe Diameter (mm)	l/s	m/s				
Mini Beany High Capacity Outfall	150	40	3.67				
Mini Beany High Capacity Outfall	225	91	3.75				
Mini Beany Inline End Outlet Outfall	150	29	2.67				
Mini Beany Inline Side Outlet Outfall	150	29	2.67				

Mini Beany Component Codes

A Top Blocks					
Top Blocks	Length (mm)	Width (mm)	Height (mm)	Unit Weight (kg)	Item Code
HB Standard Grey	1000	250	240	95	DR672010
HB Standard Grey	500	250	240	48	DR672020
45° SP Standard Grey	1000	250	240	98	DR672040
45° SP Standard Grey	500	250	240	49	DR672050
Bull Nose Conservation	1000	250	240	139	DR931210
Bull Nose Conservation	500	250	240	69.5	DR931211

*Special finishes may be available upon request

B Base Channels

Base Channels	Length (mm)	Width (mm)	Invert Width (mm)	Depth (mm)	Invert Depth (mm)	Unit Weight (kg)	Item Code
210 Channel	1000	280	150	210	135	102	DR696010
260 Channel	1000	280	150	260	185	109	DR697010
310 Channel	1000	280	150	310	235	122	DR698010
360 Channel	1000	280	150	360	285	144	DR699010
210 Channel	500	280	150	210	135	51	DR696020
260 Channel	500	280	150	260	185	55	DR697020
310 Channel	500	280	150	310	235	61	DR698020
360 Channel	500	280	150	360	285	77	DR699020

B1 Radial Top

Height

(mm)

135

135

240/135

240/135

240/135 82

240/135 82

A1 Dropped Crossing Accessories

Length

(mm)

1000

1000

1000

1000

1000

1000

Width

(mm)

250

250

250

250

250

250

Dropped Crossing

Conservation Centre Stone

Conservation Drop Kerb LH

Conservation Drop Kerb RH

Accessories

Drop Kerb LH

Drop Kerb RH

Centre Stone

Radial Tops	Unit Weight (kg)	Item Code
HB Cut 30/10 Ext Rad	44	DR672310
HB Cut 30/10 Int Rad	44	DR672311
HB Cut 9/6 Ext Rad	44	DR672320
HB Cut 9/6 Int Rad	44	DR672321
HB 9/6 Ext Cons Tex	35	DR931620
BN 9/6 Int Cons Tex	35	DR931230
BN 30/10 Ex Cons Tex	35	DR931215
BN 9/6 Ext Cons Tex	35	DR931225
BN 30/10 Int Cons Tex	35	DR931220
BN 9/6 Int Cons Tex	35	DR931230

More radius and corner units can be made

available upon request

Unit Weight

(kg)

82

70

70

82

Item Code

DR689920

DR689940

DR931400

DR689930

DR931450

DR931401

C Transition Channels

Transition Channels	Length (mm)	Width (mm)	Invert Width (mm)	Depth (mm) Upsteam/ Downstream	Invert Depth (mm) Upsteam/Downstream	Unit Weight (kg)	Item Code
210 - 260	500	280	150	210/260	135/185	54	DR696330
260 - 310	500	280	150	260/310	185/235	61	DR697330
310 - 360	500	280	150	310/360	235/285	77	DR698330

Mini Beany with reference numbers indicated in **bold** black are available ex-stock. Mini Beany with reference numbers indicated in light are manufactured to order. Contact our sales office to discuss your requrements.

Mini Beany Component Codes

2	TO Base 9/6	51	DR696120
2	60 Base 30/10	55	DR697110
2	60 Base 9/6	55	DR697120
3	10 Base 30/10	61	DR698110
3	10 Base 9/6	61	DR698120
3	60 Base 30/10	77	DR699110
3	60 Base 9/6	77	DR699120
Е	End Cap/Cap C	Outlets	
E	End Cap/Cap C	Outlets	
E	End Cap/Cap C	Unit Weight (kg)	Item Code
E E 2	End Cap/Cap C ind Cap/Cap Outlets 10 End Cap	Unit Weight (kg)	ltem Code DR696310
E 2 2	End Cap/Cap C and Cap/Cap Outlets 10 End Cap 60 End Cap	Dutlets Unit Weight (kg) 1	ltem Code DR696310 DR697310

210 End Cap	1	DR696310
260 End Cap	1	DR697310
310 End Cap	1	DR698310
360 End Cap	1	DR699310
210 Cap Outlet	2	DR696320
260 Cap Outlet	2	DR697320
310 Cap Outlet	2	DR698320
360 Cap Outlet	2	DR699320

F Access Covers		
Access Covers	Unit Weight (kg)	Item Code
45 SP Near Side Access Cover	40	DR691015
45 SP Offside Access Cover	40	DR691025
HB Universal Access Cover	40	DR691022
Bull Nose Near Side Access Cover	40	DR691027

Jourians		
Outfalls	Unit Weight (kg)	Item Code
Inline Side Outfall	150	DR689000
Inline End Outfall	142	DR689010
Silt Box	72	DR689910
H Cover Plates		
a b i		

Cover Plates	Unit Weight (kg)	Item Code
Cover Plate 500 mm	12	DR691030
Cover Plate 1000 mm	6	DR691040
Cover Plate 30/10	6	DR691050
Cover Plate 9/6	6	DR691060

	Cable Duct Blocks							
c	able Duct Blocks	Unit Weight (kg)	Item Code					
H	IB Cable Duct Block	3	DR689900					
4	5° SP Cable Duct Block	3	DR689905					

Drawing 1 of 6

Mini Beany Half Battered Top Block With Base 210, 260, 310 or 360

Elevation

Cross section

D Mm mm S D D HB BN C C SP ш НВ с BN mm) B SP mm) В НВ mm) BN mm) A SP (mm) A HB (mm) 260 310 Base Unit Base 210 Base 310 Base 360 Base 260

Mini Beany[®]

Drawing 2 of 6

Mini Beany®

001

084

Drawing 3 of 6

Drawing 4 of 6

Drawing 5 of 6

hs	h A Base Deptl	210	260	310
Base Dept	Base Dept	260	310	360

Mini Beany Vehicle Crossing Transition
Drawing 6 of 6

Notes For Mini Beany

Drawings 1 to 6

1. Mortars shall be;

i) A Mortar class 12 cement mortar to BS EN 998-2 for bedding the Top Blocks

ii) Marshalls' M-Flex for bedding Silt Boxes onto the Beany Trapped Gully Unit

iii) Marshalls' M-Flex for bedding the sections of the Marshalls' Trapped Gully Unit sections

2. Concrete bed, haunch and surround shall be;

i) A mix ST1 concrete to BS 8500-1&2 and BS EN 206-1 for Base Units used in the normal kerb application

ii) A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Base Units used within the carriageway (i.e. where Base Units are used with cover plates and are trafficked)

iii) A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Beany Trapped Gully, Silt Traps, Catch Pits and outfall details

iv) The specification for carrier pipe concrete surround is by others

- 3. Marshalls' vertical joint sealant, M-Seal, shall be applied to all Base Units.
- **4.** Mini Beany Access Covers and Frames are hinged and handed to the direction of the traffic, specified "nearside" and "offside".
- Movement joint details that fully isolate the Mini Beany whilst maintaining restraint shall be provided adjacent to all concrete slabs, even when the slab is covered by other materials.
- **6.** For Mini Beany with cover plate applications, a minimum of 50mm of concrete cover above the cover plate will be required.
- 7. All dimensions are in millimetres.

Specification

Introduction

The following specification covers the complete Mini Beany system including ancillary fittings and is compatible with the Standard Detail Sheets.

Where the Manual of Contract Documents for Highway Works is used, information for 'Appendix 5/5: Combined Drainage and Kerb systems' is available on request.

Mini Beany

- The combined kerb and drainage system shall be Mini Beany, manufactured in pre-cast concrete, with the exception of certain fitments which are manufactured in cast iron as supplied by Marshalls, Halifax HX5 9HT in accordance with Standard Detail Sheets.
- The combined kerb and drainage shall consist of a two part system consisting of top blocks with a *straight backed half battered/straight backed 45° splayed*/conservation BN profile* together with constant depth base units that are *210/260/310/360** deep. The overall width of the system shall be not less than 280mm.
- 3. All components of the Mini Beany system shall comply with the British Standard BS EN1433:2002, load classification E600 and the following:

(i) The water inlet aperture shall increase in size towards the inside of the unit with a minimum divergence angle of 5°

(ii) The angle of incline of the water inlet aperture shall be at least 30° to the horizontal

(iii) Water inlet apertures shall be wholly within individual units and not within 100mm of the end of each unit

(iv) When installed, the depth of construction from the top of the base channels to the drained area surface shall be not less than 100mm

(v) The Top Block shall have an Unpolished Skid Resistance Value (USRV) in excess of 70 when tested in accordance with BS 7263:Part 3

(vi) The system shall have a minimum of 12,850 $\rm mm^2/m$ water inlet aperture area

4. The combined kerb and drainage system comprising straight top and base units, splay cut top and base units for radius use, straight and radius cover plates, outfalls, silt traps, junctions, access covers, end caps, cap outlets and sealant shall be installed to the line and levels indicated in the contract documents and in accordance with the manufacturers instructions and Standard Details.

Note: * delete as required

Construction

Introduction

Installation of the Mini Beany Combined Kerb and Drainage System should be carried out in accordance with the Specification and Standard Detail Sheets. The following method of installation is recommended.

Excavation

Sufficient material should be excavated to accommodate Top Block and Base Units, concrete bedding and haunching, any 'soft spots' or poorly compacted formation should be made good.

Where Base Units and Cover Plates are to be installed beneath new pavements, the pavements shall be completed to top of roadbase level for flexible construction, or to top of sub-base level for rigid construction, before excavation for the Units commences.

Setting Out

Setting out pins should be accurately located, with a string line level with the top front corners of the Base Units. Line and level will depend on the kerb upstand. Pins can be located to the rear of the Units to avoid having to lift the Units over the string line.

Plenty of setting out pins should be inserted where Mini Beany is laid on horizontal curves (e.g. every 5m for radius of 30m) and the appropriate 'splay' Units used for radii of 30m or less.

The various radius units are:-

Type of Unit	Radii	L (mm)	l (mm)
50/30.1 (External & Internal Radius) All base units	50.0m to 30.0m	500	500
30/10 (External & Internal Radius) All base units	29.9m to 10.0m	480	470
9/6 (External & Internal Radius) All base units	9.9m to 6.0m	480	460
50/30.11 (External Radius) Top Block	50.0m to 30.0m	500	500
30/10 (External Radius) Top Blocks	29.9m to 10.0m	480	470
9/6 (External Radius) Top Blocks	9.9m to 6.0m	480	460
30/10 (Internal Radius) Top Blocks	29.9m to 10.0m	480	470
9/6 (Internal Radius) Top Blocks	9.9m to 6.0m	480	460

Radius For Zero Gap							
Product Type	Radius (m)						
30/10	15.2						
9/6	7.6						

Radius Units

The theoretical maximum gap between adjacent Top Block corners when laid to horizontal curves is 4mm .

Top Blocks and 480mm long Base Units are available for either external or internal horizontal curves.

In practice, gaps between Base Units may be slightly greater due to laying tolerances and application of vertical joint sealant.

The approximate number of radius Top Blocks and Base Units required for a quarter circle (external radius) is 3.21 x horizontal radius e.g. for a 15m radius, 48 No.

Base Units

Base Units shall be laid to correspond to carriageway channel levels, or where beneath the carriageway, be laid to a straight grade. Starting at the Outfall, i.e. working uphill, the Units should be bedded on to a freshly mixed foundation of the appropriate grade and thickness of concrete (refer to Standard Detail Sheet).

Concrete bed, haunch and surround shall be:

- i) A mix ST1 concrete to BS 8500-1&2 and BS EN 206-1 for Base Units used in the normal kerb application
- A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Base units used within the carriageway (i.e. where Base units are used with cover plates and are trafficked)
- iii) A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Beany Trapped Gully, Silt Traps, Catch Pits and outfall details
- iv) The specification for carrier pipe concrete surround is by others

Alternatively, the Units may be bedded on to a layer of cement mortar 10-40mm thick on a previously prepared concrete foundation.

The joint sealant is applied during installation of the base units, prior to installation of the top blocks. Sufficient M-Seal joint sealant should be trowel applied to one end face of the bases. Surplus sealant shall be removed from the inner surface of the Units.

1 drum of M-Seal should be sufficient for the following length of Mini Beany:

M-Seal Requirement							
Base Type	Coverage (m/18l)						
210	240						
260	185						
310	150						
360	125						

Where cutting is necessary, one or two Units shall be cut so that no single Unit is less than 200mm in length. All cutting and trimming of the Units shall be carried out with a concrete saw or disc cutter. Cutting of Base Junctions or Outfall Units is not recommended.

At the termination of any Mini Beany runs, not located at outfalls, the base units shall be closed using galvanised steel end caps as detailed in the Standard Detail Sheets.

Top Blocks

The string line should be set to the level of the top corner of Units.

Again, starting at the Outfall, the Units should be set directly onto a liberal quantity of stiff, cement mortar to completely fill the whole of the joint. Cement mortar shall be Class 12 in accordance with BS EN 998-2. These should be tamped into position close to previously laid Units and the alignment checked. The levels should be checked using the string line and a spirit level. In addition, the general alignment should be checked from all directions as each Block is laid. Surplus mortar shall be removed from the units as work proceeds.

Top Blocks shall be close jointed with adjacent top and front faces corresponding and any Unit deviating by more than 3mm in 3m from line and level shall be made good by lifting and relaying.

Construction

The inside and outside of the joints between Base and Top Units should be pointed and cleaned out with a brush or rag as work proceeds.

Where cutting is necessary, one or two Units shall be cut so that no single Unit is less than 200mm in length. All cutting and trimming of the Units, other than cast iron or steel, shall be carried out with a concrete saw or disc cutter.

Cover Plates

Cover Plates should be bedded on cement mortar to the specified thickness, pointed inside and outside of the joints with the inside of the Base Units being cleaned out as work proceeds. The Cover Plates should be close jointed and the joints sealed with 50mm wide M-Tape. Cover Plates shall be suitably protected before and during installation in order that the protective coating is not damaged.

Where cutting is necessary, one or two plates shall be cut so that no single plate is less than 250mm. Cut or damaged plates shall be renovated using Defcon Z or similar approved in accordance with BS 729: 1971 (1986).

Top Units

- In order to obtain a 'good line', it is very important to lay the Top Units on the specified thickness of compacted mortar using the string line and Base Units as a guide. Too thin a layer of mortar will not allow sufficient sideways movement of the units to achieve an acceptable alignment.
- 2. It is not necessary for Top and Base Unit vertical joints to line up although there will be more tolerance for adjustment of the Tops, if the joints are close together on curves of 10m radius or less.
- 3. Where Mini Beany is laid on or adjacent to existing or proposed concrete slabs, transverse joints shall be formed within the units and haunching adjacent to the slab joints and also longitudinal movement joints between the haunching and the slabs. Where necessary, Top Unit drainage openings shall be protected against the ingress of material during concreting operations by covering with Waterproof Cloth Tape.
- 4. Outfalls, Silt Traps and Access Covers shall be constructed in accordance with the Standard Detail Sheet using the appropriate type of Base Unit. Units shall be bedded on sufficient M-Flex sealant over a gully pot, Outfall Unit or vertical pipe, to make a watertight joint. Where necessary in situ smooth concrete benching shall be shaped to the full depth of the Base Unit. In Silt Traps, the pipe shall be bedded into mix ST4 concrete which shall be fully compacted to make a watertight seal.
- Cable Duct Blocks shall be bedded on cement mortar in accordance with the Standard Detail Sheet.
- 6. In situ concrete haunching or surround should not be placed until the installed blocks have been inspected and approved by the Engineer. The haunching/surrounding should be carried out as one operation to complete lines of Top and Base Units/Cover Plates in accordance with the Standard Detail Sheet. The top of the concrete surround for Base Units and Cover Plates under new carriageways shall be finished level with the top of the roadbase for flexible construction or top of sub-base level for rigid construction. Construction plant or vehicles crossing the Units shall be suitable in relation to thickness of concrete cover so that damage is not caused to the Units, Cover Plates, concrete bedding or haunching.

- 7. Adjacent carriageway and/or footway construction shall not be commenced within 3 days of any jointing or haunching/surrounding concrete being placed. Base Units, Outfalls, Junctions or Bends not covered by fully bedded Top Units, Cover Plates or covers and frames, shall be adequately supported against loadings imposed by construction traffic.
- **8.** Where flexible surfacing is laid greater than 15mm above the bottom of the drainage aperture, it shall be cut and shaped after rolling when partially cooled at each Top Unit, to form a smooth chamfer.
- 9. On completion of the works, the Mini Beany System shall be cleaned out by high pressure water jetting (100-150 bar at 200 l/min minimum) and left free from obstructions and all Outfalls and Silt Traps shall be emptied. Top Unit drainage apertures shall be covered by timber boards or other approved method, during jetting operations. The cleaning process shall be repeated where necessary after the completion of any remedial works.
- **10.** When used in conjunction with the Manual of Contract Documents for Highway Works, reference should be made to Appendix 5/5.

For works not carried out under the above specification, it may be necessary to clarify cement mortar in accordance with BS EN 998-2 and concrete ST1, ST4 and grade C25/30 as specified in BS 8500-1 & 2 and BS EN 206-1.

11. Installation operations should be discontinued if weather conditions are such that the performance of the Mini Beany may be jeopardised.

Installation should not be undertaken when the temperature is below 3° C on a falling thermometer and below 1° C on a rising thermometer.

12. All necessary Personal Protective Equipment (PPE) should be worn on site, as the site rules dictate. Goggles, ear protection, dust masks and protective footwear must always be worn whenever cutting operations are undertaken.

Traffic Drain ♥

Traffic Drain

- Low to Medium Capacity system, complimenting the Mini Beany Range
 - Ensures continuity of flow between kerb and top units
- Able to withstand fast moving traffic
- Able to withstand heavy loading highway application

Traffic Drain 🛇

Grate Drainage System

- Traffic Drain utilises the same base units as the Mini Beany system combining with Traffic Drain top unit to form a linear drainage system which is laid level with the pavement surface.
- Traffic Drain top unit is manufactured from Cast iron
- The cast iron top unit is then bedded onto any of the 4 Mini Beany base units being 210mm, 260mm, 310mm and 360mm
- This forms a robust linear drainage system suitable for draining large paved surfaces varying from pedestrian precincts to heavy duty industrial areas and highways.

Versatile

• As expected Traffic Drain integrates with the Mini Beany Top Units creating a unique system capable of providing continuous drainage of the carriageway at road and vehicular crossings.

Mini Beany to Traffic Drain (cast iron with holes)

Load Classifications

• The Traffic Drain is strength tested in accordance with BS EN 1433:2002 to F900 Classification

Access Cover and Frame

• A heavy duty cover frame is available for use with Outfalls and Silt Traps to allow for inspection and maintenance.

Components

Cover Plates

Galvanised steel Cover Plates for use with Traffic Drain Base Channels where a top unit is not required, such as under kerbs for connection to Beany. 1000mm & 500mm lengths + Radius Units

BASE COMPONENTS

All Base Units are 1000mm long, half channels, ancillary items and transition units are 500mm long.

Base Channels

Base Transitions 210-260, 260-310, 310-360

OUTFALLS

High Capacity Outfall

- A 2 section concrete trapped outfall, silt box and cast iron Max-E-Channel access cover.
- Outlet for
 150mm or
 225mm diameter
 pipe with universal seals.
- Bottom 2 sections can be orientated in any direction allowing flexibility of pipework layout.
- Cut-out panels in the silt box allow Traffic Drain runs from both sides.

Note: Silt Box and cast iron Access Cover Frame available separately.

Inline Side Outlet Outfall

- A 2 section concrete trapped outfall, silt box and cast iron Traffic Drain Access Cover and Frame.
- Side outlet for 150mm diameter pipework with universal seal.
- Cut-out panels in the silt box allow Traffic Drain runs from both sides.

Note: Cast iron Access Cover and Frame available separately.

Inline End Outlet Outfall

• A 2 section concrete trapped outfall, with cast iron Traffic Drain Access Cover and Frame.

Base 360

- End outlet for 100mm diameter pipework with universal seal.
- Cut-out panel to allow Traffic Drain run from one side only.

Note: Cast iron Access Cover and Frame available separately.

Traffic Drain T Junction Available in all 4 base channel depths. 500mm in length.

Silt Box

A concrete unit that with a Max-E-Channel cast iron Access Cover and Frame allows a high capacity outfall or silt trap to be installed in a run of traffic drain. It has cut-out panels either end to accept runs from either or both sides. An aperture in the base allows water to flow vertically into an outfall or silt trap.

Hydraulic Data

FLOW CAPACITY

Hydraulic Data

The Traffic Drain hydraulic data stated in the following tables comprises of flow capacity, in litres per second (I/s) and velocity in metres per second (m/s). This data has been calculated using spatially variable flow design principles.

Base 210																
Gradient	Z	ero	1 in	1000	1 ir	n 500	1 in	400	1 ir	n 300	1 in	200	1 in	100	1 ir	n 50
Length(m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
10	6	0.38	7	0.44	7	0.44	8	0.50	8	0.50	9	0.56	9	0.56	13	0.81
20	6	0.38	7	0.44	7	0.44	8	0.50	8	0.50	10	0.63	11	0.69	14	0.88
30	5	0.31	7	0.44	8	0.50	8	0.50	9	0.56	10	0.63	12	0.75	14	0.88
40	5	0.31	6	0.38	8	0.50	8	0.50	9	0.56	11	0.69	13	0.81	15	0.94
50	5	0.31	6	0.38	8	0.50	9	0.56	9	0.56	11	0.69	13	0.81	15	0.94
75	4	0.25	6	0.38	8	0.50	9	0.56	10	0.63	13	0.81	14	0.88	17	1.06
100	3	0.19	6	0.38	8	0.50	9	0.56	11	0.69	14	0.88	17	1.06	19	1.19

Base 260																
Gradient	Ze	ero	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ii	n 50
Length(m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
10	10	0.42	11	0.46	12	0.50	13	0.54	14	0.58	15	0.63	17	0.71	22	0.92
20	9	0.38	11	0.46	12	0.50	13	0.54	14	0.58	16	0.67	18	0.75	22	0.92
30	9	0.38	11	0.46	12	0.50	13	0.54	14	0.58	16	0.67	18	0.75	24	1.00
40	9	0.38	11	0.46	13	0.54	13	0.54	14	0.58	17	0.71	19	0.79	24	1.00
50	8	0.33	11	0.46	13	0.54	13	0.54	15	0.63	17	0.71	20	0.83	25	1.04
75	8	0.33	10	0.42	13	0.54	14	0.58	16	0.67	19	0.79	22	0.92	26	1.08
100	7	0.29	10	0.42	14	0.58	14	0.58	16	0.67	21	0.88	26	1.08	29	1.21
150	5	0.21	9	0.38	15	0.63	15	0.63	18	0.75	24	1.00	27	1.13	31	1.29
					-											

Base 310																
Gradient	Ze	ero	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	n 50
Length(m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
10	13	0.42	16	0.52	17	0.55	18	0.58	18	0.58	20	0.65	24	0.77	30	0.97
20	13	0.42	15	0.48	17	0.55	18	0.58	19	0.61	21	0.68	25	0.81	30	0.97
30	13	0.42	15	0.48	17	0.55	18	0.58	19	0.61	21	0.68	25	0.81	32	1.03
40	13	0.42	15	0.48	17	0.55	18	0.58	19	0.61	22	0.71	26	0.84	32	1.03
50	12	0.39	15	0.48	17	0.55	18	0.58	20	0.65	23	0.74	27	0.87	33	1.06
75	11	0.35	15	0.48	17	0.55	19	0.61	21	0.68	25	0.81	28	0.90	34	1.10
100	10	0.32	14	0.45	17	0.55	19	0.61	22	0.71	26	0.84	30	0.97	36	1.16
150	9	0.29	14	0.45	18	0.58	20	0.65	23	0.74	30	0.97	34	1.01	39	1.26
200	7	0.23	13	0.42	18	0.58	21	0.68	25	0.81	33	1.06	37	1.19	43	1.39

Base 360																
Gradient	Z	ero	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 ir	n 50
Length(m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
25	18	0.46	21	0.54	23	0.59	24	0.62	25	0.64	28	0.72	33	0.85	40	1.03
50	17	0.44	20	0.51	23	0.59	24	0.62	26	0.67	30	0.77	35	0.90	42	1.08
75	16	0.41	20	0.51	23	0.59	25	0.64	27	0.69	32	0.82	36	0.92	44	1.13
100	15	0.38	19	0.49	23	0.59	25	0.64	28	0.72	34	0.87	38	0.97	46	1.18
125	14	0.36	19	0.49	23	0.59	25	0.64	29	0.74	35	0.90	40	1.03	48	1.23
150	13	0.33	19	0.49	24	0.62	26	0.67	30	0.77	37	0.95	42	1.08	50	1.28
175	12	0.31	18	0.46	24	0.62	26	0.67	31	0.79	39	1.00	44	1.13	52	1.33
200	11	0.28	18	0.46	24	0.62	27	0.69	32	0.82	41	1.05	46	1.18	54	1.38
225	10	0.26	18	0.46	24	0.62	27	0.69	32	0.82	43	1.10	48	1.23	55	1.41
250	9	0.23	17	0.44	24	0.62	28	0.72	33	0.85	45	1.15	50	1.28	57	1.46
275	8	0.21	17	0.44	25	0.64	28	0.72	34	0.87	47	1.21	51	1.31	59	1.51

Theoretical Outfall Capacities			
Outfall Type	Outlet Pipe Diameter (mm)	l/s	m/s
Traffic Drain High Capacity Outfall	225	87	3.61
Traffic Drain Inline End Outlet Outfall	150	29	2.67
Traffic Drain Inline Side Outlet Outfall	150	29	2.67

Traffic Drain Component Codes

A Top Unit							
Top Unit		Loading	Length (mm)	Width (mm)	Depth (mm)	Unit Weight (kg)	Item Code
Traffic Drain Cast Iro	n	F900	500	250	110	23	DR695020
B Constant	Depth C	hannels					
Constant Depth Channels	Length (mm)	Width (mm)	Invert Width (mm)	Depth (mm)	Invert Depth (mm)	Unit Weight (kg)	Item Code
210 Press Chan	1000	280	150	210	135	102	DR696010
260 Press Chan	1000	280	150	260	185	109	DR697010
310 Press Chan	1000	280	150	310	235	122	DR698010
360 Press Chan	1000	280	150	360	285	144	DR699010
210 Press Chan	500	280	150	210	135	51	DR696020
260 Press Chan	500	280	150	260	185	55	DR697020
310 Press Chan	500	280	150	310	235	61	DR698020
360 Press Chan	500	280	150	360	285	77	DR699020

C Transition Channels Invert Width Unit Weight Depth (mm) Invert Depth (mm) Transition Length Width Upsteam/ . Upsteam/ Item Code (mm) Channels (mm) (mm) Downstream Downstream (kg) 210 - 260 260 - 310 150 150 135/185 185/235 54 61 DR696330 DR697330 1000 280 210/260 1000 280 260/310 310 - 360 235/285 DR698330 1000 280 150 310/360 77

D

Traffic Drain Component Codes

D	End Cap/Cap (Dutlets	
En	d Cap/Cap Outlots	Unit	Itor

End Cap/Cap Outlets	Weight (kg)	item code
210 End Cap	1	DR696310
260 End Cap	1	DR697310
310 End Cap	1	DR698310
360 End Cap	1	DR699310
210 Cap Outlet	2	DR696320
260 Cap Outlet	2	DR697320
310 Cap Outlet	2	DR698320
360 Cap Outlet	3	DR699320

E Outfalls & Access Covers

Outfalls & Access Covers	Unit Weight (kg)	Item Code
Traffic Drain Cast Iron Access C&F	34	DR6950100
Inline Side Outfall	150	DR689000
Inline End Outfall	142	DR689010
Silt Box	72	DR689910

F Cover Plates

Cover Plates	Unit Weight (kg)	Item Code
Cover Plate 500 mm	6	DR691030
Cover Plate 1000 mm	12	DR691040
Cover Plate 30/10	6	DR691050
Cover Plate 9/6	6	DR691060

Traffic Drain with reference numbers indicated in **bold** black are available ex-stock. Traffic Drain with reference numbers indicated in light are manufactured to order. Contact our sales office to discuss your requrements.

Mini Beany to Traffic Drain

Mini Beany can be used with Traffic Drain where the drainage run continues but the kerb line finishes. A smooth channel invert ensures undisturbed flow.

Drawing 1 of 5

Base Unit Length = 1000mm Top Unit Length = 500mm

Drawing 2 of 5

Drawing 3 of 5

Drawing 4 of 5

Traffic Drain To Max-E-Channel - On-line Transition

Traffic Drain

Drawing 5 of 5

Notes For Traffic Drain

Drawings 1 to 5

1. Mortars shall be;

i) A Mortar class 12 cement mortar to BS EN 998-2 for bedding of the Cast Iron Top Units for applications up to Load Classification D400 to BS EN 1433

ii) Marshalls' M-Bond epoxy mortar for bedding of Cast Iron Top Units for applications E600 and F900 to BS EN 1433

iii) Marshalls' M-Flex for bedding the sections of the Traffic Drain High Capacity Outfall

2. Concrete bed, haunch and surround shall be;

i) A C20/25 concrete to BS 8500-1&2 and BS EN 206-1 for applications up to Load Classification C250 to BS EN 1433

ii) A C25/30 concrete to BS 8500-1&2 and BS EN 206-1 for applications up to Load Classification F900 to BS EN 1433

iii) A mix ST4 concrete to BS 8500-1&2 and BS EN 206-1 for Outfalls and Silt Trap details

iv) The specification for carrier pipe concrete surround is by others

- 3. Marshalls' vertical joint sealant, M-Seal, shall be applied to all Base Channels.
- 4. Movement joint details that fully isolate the Traffic Drain whilst maintaining restraint shall be provided adjacent to all concrete slabs, even when the slab is covered by other materials.
- 5. When used in conjunction with the Mini Beany system, Traffic Drain base channels are the same as Mini Beany base channels.
- 6. All dimensions are in millimetres.

Specification

Introduction

The following specification covers the complete Traffic Drain system including ancillary fittings and is compatible with the Standard Detail sheets.

Where the Manual of Contract Documents for Highway Works is used, information for "Appendix 5/6: Linear Drainage Systems" is available on request.

Traffic Drain

- The linear drainage system shall be Traffic Drain, manufactured in pre-cast concrete and cast iron as supplied by Marshalls, Halifax HX5 9HT in accordance with Standard Detail Sheets.
- The linear drainage system shall consist of a two part system with cast iron top units together with base units that are 210/260/310/360mm* deep. The overall width of the system shall be not less than 280mm.
- 3. All components of the Traffic Drain system, shall comply with the British Standard BS EN1433:2002, Load Classification F900 and the as following:

(i) Cast iron top units with inclined side walls.

(ii) The system shall have a minimum of 10,200mm²/m water inlet aperture area.

(iii) The top unit shall be bonded to the base units using Marshalls'M-Bond mortar.

(iv) When installed, the minimum depth of construction above the top of the base unit to the drained area surface level shall be not less than 125mm.

4. The linear drainage system comprising straight top and base units, outfalls, silt traps, access covers, junctions, end caps and sealant shall be installed to the line and levels indicated in the contract documents and in accordance with the manufacturer's instructions and Standard Details.

Note: * delete as required

Construction

Introduction

Installation of the traffic drain linear drainage system should be carried out in accordance with the specification and standard detail sheets. The following method of installation is recommended.

Excavation

Sufficient material should be excavated to accommodate top and base units, concrete bedding and haunching, any 'soft spots' or poorly compacted formation should be made good.

Setting out

Setting out pins should be accurately located, with a string line level with the top front corners of the base units. Pins can be located to the rear of the units to avoid having to lift the units over the string line.

Base units

Starting at the outfall, i.e. Working uphill, the units should be bedded on to a freshly mixed foundation of the appropriate grade and thickness of concrete (refer to standard detail sheet.).

Concrete bed, haunch and surround shall be:

- A C20/25 concrete to BS 8500-1&2 and BS EN 206-1 for applications up to load classification C250 to bs en 1433
- A C25/30 concrete to BS 8500-1&2 and BS EN 206-1 for applications up to load classification F900 to BS EN 1433
- A mix ST4 concrete to bs 8500-1&2 and BS EN 206-1 for Max-E-Channel trapped gullies, silt traps and outfall details
- The specification for carrier pipe concrete surround is by others

Alternatively, the units may be bedded on to a layer of cement mortar 10-40mm thick on a previously prepared concrete foundation.

Jointing of adjacent units shall be carried out during installation. Marshalls' M-Seal sealant should be trowel applied to the face of the channel. Surplus sealant shall be removed from the inner surface of the units as work proceeds.

One drum of M-Seal is sufficient to seal the following.

M-Seal Requirement					
Base Type	Coverage (lin.m/18l)				
210	240				
260	185				
310	150				
360	125				

Where cutting is necessary, one or two base units shall be cut so that no single base unit is less than 350mm in length. All cutting and trimming of the units shall be carried out with a concrete saw or disc cutter.

At the termination of traffic drain runs, not located at outfalls, the base units shall be closed using galvanised steel end caps as detailed in the standard detail sheets.

Top units

The string line should be set to the level of the top front corner of the units.

Again, starting at the outfall, the units should be set directly onto a liberal quantity of stiff, cement mortar (or M-bond epoxy mortar* where specified) to completely fill the whole of the joint. Cement mortar shall be class 12 in accordance with BS EN 998-2. These should be tamped into position close to previously laid units and the alignment checked. The levels should

be checked using the string line and a spirit level. In addition, the general alignment should be checked from all directions as each unit is laid. Surplus mortar shall be removed from the units as work proceeds.

Top units shall be laid with the top of the unit 5mm below the final pavement level.

The inside and outside of the joints between base and top units should be pointed and cleaned out with a brush or rag as work proceeds.

Top units shall not be cut.

* M-bond epoxy mortar coverage approximately 7.5l/m per 25 litres

Notes

- In order to obtain a 'good line', it is very important to lay the top units on the specified thickness of compacted mortar using the string line and base units as a guide. Too thin a layer of mortar will not allow sufficient sideways movement of the units to achieve an acceptable alignment.
- 2. It is not necessary for top and base unit vertical joints to line up.
- 3. Where traffic drain is laid on or adjacent to existing or proposed concrete slabs, transverse joints shall be formed within the units and haunching adjacent to the slab joints and also longitudinal movement joints between the haunching and the slabs. Where necessary, top unit drainage apertures shall be protected against the ingress of material during concreting operations.
- 4. Outfalls, silt traps and access covers shall be constructed in accordance with the standard detail sheet. In silt traps, the pipe shall be bedded into mix ST4 concrete which shall be fully compacted to make a watertight seal.
- In situ concrete haunching or surround should not be placed until the installed blocks have been inspected and approved by the engineer. The haunching/surrounding should be carried out as one operation to complete lines of top and base units in accordance with the standard detail sheet
- 6. Adjacent carriageway and/or footway construction shall not be commenced within 3 days of any jointing or haunching/surrounding concrete being placed. Base units and outfalls, not covered by fully bedded top units or covers and frames, and shall be adequately supported against loadings imposed by construction traffic.
- 7. On completion of the works, the traffic drain system shall be cleaned out by high pressure water jetting (100-150 bar at 200 l/min minimum) and left free from obstructions and all outfalls and silt traps shall be emptied. Top unit drainage apertures shall be covered by timber boards or other approved method, during jetting operations. The cleaning process shall be repeated where necessary after the completion of any remedial works.
- Installation operations should be discontinued if weather conditions are such that the performance of the inspection chamber may be jeopardised.

Installation should not be undertaken when the temperature is below 3 degrees on a falling thermometer and below 1 degree on a rising thermometer.

9. All necessary personal protective equipment (PPE) should be worn on site, as the site rules dictate. Goggles, ear protection, dust masks and protective footwear must always be worn whenever cutting operations are undertaken.

Mono Beany Standard Grey

Standard Grey

- Single Concrete Unit CK&D system
- Low to Medium capacity
- Combines Strength and aesthetics due to Marshalls' high strength M-Tech Concrete

Mono Beany[®] 😵 🖳

- One Piece Unit
 - Available in two depths
 - Half Battered and 45° Splayed Profiles
 - Fully compatible with the comprehensive Beany ancillaries

One Piece Conbined kerb and Drainage System

Mono Beany®

- The growing demand for more cost-effective and less complicated drainage systems has led to modern linear drainage becoming the preferred choice amongst specifiers and contractors.
- Marshalls Mono Beany demonstrates our commitment to this growing market.
- Mono Beany is an extension of our original Beany Block, and alongside Mini Beany this new addition not only complements but completes our comprehensive Beany range of water management solutions.
- Manufactured from Marshalls M-Tec concrete, Mono Beany provides increased strength with less material.
- Mono Beany offers versatility, available in both Half Battered and Splayed profiles, in 500mm and 1000mm lengths with two invert depths and a full suite of problem solving accessories.

- Mono Beany achieves a load classification of D400 making it suitable for a number of trafficking applications including major and minor carriageways, car parks and commercial and urban scapes.
- Installation costs are further reduced and speeds increased due to only a single mechanical lift being required per meter.
- This one piece system is simple and straight forward to design and easy to set out and install. Cost effective and flexible with excellent surface drainage efficiency specifically designed for low to medium flow capacity. Inlet apertures are 500mm apart, reducing running or fast flowing water on the carriageway and eliminating ponding.
- Mono Beany carries the British Standard Kitemark, is certified to BS EN:1433 and is CE approved.

Cost Advantages

Mono Beany is ideal where specific problems would arise with conventional drainage methods for example:

- Where there is insufficient fall to the outfall point.
- Where, in flat areas, either numerous, closely spaced gullies or false falls would be required in the carriageway.
- Where long gully connections would be needed.
- Where surface water drainage pipes would conflict with service mains and cables.
- Where ponding would occur at low points.
- Where traffic safety and control measures would be required when widening existing carriageway.

Mono Beany is likely to be more economical than conventional kerb/point drainage where carriageways have crossfall, few vehicular crossings or where a surface water drain would be required for highway drainage purposes. Cost savings have been significant on highway and non-highway schemes incorporating lengths of the Beany Block system. For comparison purposes, conventional methods should include the following as appropriate:

- Surface water drain (including reinstatement).
- Gullies.
- Gully connections.
- Manholes.
- Kerbs.
- Channel Blocks.
- Extra 200mm width of footway plus a small amount of carriageway.
- Service diversions.
- Traffic safety and control (existing carriageways).

Construction Savings

- Mono Beany System combines water interception and transportation in one system. This minimises or eliminates the need for carrier drains, gullies and manholes, reducing construction costs and saving time.
- Simple one-piece system straightforward to design and detail, reducing design times and cost. Easy to set out and straightforward to install.
- The overall construction period can be reduced as carriageway materials may be laid in a continuous sequence. Unlike laying conventional drainage, excavations are kept to a minimum without exposing the formation and sub-base surfaces to possible periods of adverse weather.
- Underground cables and services can be avoided so contractual/ insurance claims are likely to be much less than when laying conventional drainage.

Low Maintenance

 Mono Beany will require periodic inspection and emptying of Silt Traps, Outfalls and Catchpits. The number of Silt Traps and Outfalls are likely to be fewer than in a conventional drainage systems*. If a blockage does occur, it can easily be located and rectified by rodding or jetting from an access point or through a top block aperture adjacent to the blockage.

*It is reccommended to have an access point at the head of the run and every 50m and a Silt Trap every 100m

Components

HALF BATTERED

Half Battered 321 1000mm

Half Battered 321 500mm

Half Battered 502 1000mm

Half Battered 502 500mm

45° Splayed 321 1000mm

45° Splayed 321 500mm

45° Splayed 502 1000mm

45° Splayed 502 500mm

ACCESSORIES

45° SPLAYED

Centre Stone 321 1000mm

Centre Stone 502 1000mm

Dropper 321

Dropper 502

*Half Battered Access Cover with Rodding Box for 321 System

*45° Splayed Access Cover with Rodding Box for 321 System

*Half Battered Access Cover with Rodding Box for 502 System

*45° Splayed Access Cover with Rodding Box for 502 System

*Access Cover with Rodding Box. Comprising a two section concrete and cast iron Rodding Box and Access Cover. Cut-out panels to allow Mono Beany runs from both sides

Hydraulic Data

FLOW CAPACITY

100

σ

Hydraulic Data

The Mono Beany hydraulic data stated in the following tables comprises of flow capacity, in litres per second (I/s) and velocity in metres per second (m/s). This data has been calculated using Colebrook White design principles.

Mono Beany									
Channel Type	3	21	321 Cen	tre Stone	502		502 Centre Stone		
Gradient '1 in'	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	
10	79	4.29	32	3.61	169	4.75	116	4.52	
20	54	2.96	22	2.49	117	3.29	80	3.13	
30	44	2.38	18	2.00	94	2.65	64	2.52	
40	37	2.04	15	1.71	81	2.27	55	2.16	
50	33	1.81	13	1.52	71	2.01	49	1.91	
75	26	1.45	10	1.22	57	1.62	39	1.53	
100	22	1.24	9	1.04	49	1.38	33	1.31	
150	18	0.99	7	0.83	39	1.11	27	1.05	
200	15	0.85	6	0.71	33	0.95	23	0.90	
300	12	0.68	5	0.57	27	0.76	18	0.72	
400	10	0.58	4	0.48	23	0.65	15	0.61	
500	9	0.51	3	0.43	20	0.57	13	0.54	
750	7	0.41	3	0.34	16	0.46	11	0.43	
1000	6	0.35	2	0.29	13	0.39	9	0.37	
1500	5	0.28	2	0.23	11	0.31	7	0.29	
2000	4	0.24	1	0.19	9	0.26	6	0.25	

Outfall Capacities			
Outfall Type	Outlet Pipe Diameter (mm)	l/s	m/s
Mono Beany inline Side Outfall	150	29	2.6

RADIUS BLOCKS

Radius	Unit Reference
≤4.99	Cut on site or extended radius
5m - 9.99m	9/5 Radius Unit
10m - 20m	20/10 Radius Unit
20.01 - 40m	0.5m Unit

Mono Beany Component Codes

A Constant D	epth Syster	n				
Constant Depth Channels	Length (mm)	Width (mm)	Height (mm)	Invert Depth (mm)	Unit Weight (kg)	ltem Code Standard Grey
Half Battered	1000	150	321	171	69	DR663030
	500	150	321	171	34.5	DR663035
	1000	150	502	352	91	DR663040
	500	150	502	352	45.5	DR663045
45° Splayed	1000	150	321	196	64	DR663120
	500	150	321	196	32	DR663125
	1000	150	502	377	86	DR663130
	500	150	502	377	43	DR663135

B Transition Channels

Transition Channels		Length (mm)	Width (mm)	Height (mm)	Invert Depth (mm) Upstream/Downstream	Unit Weight (kg)	Item Code
Half Battered	502 - 321 Transition RH	1000	150	502	352/171	107	DR663320
	502 - 321 Transition LH	1000	150	502	352/171	107	DR663321
45° Splayed	502 - 321 Transition RH	1000	150	502	377/196	107	DR663325
	502 - 321 Transition LH	1000	150	502	377/196	107	DR663326

E End Cap/Cap Outlets

End Con/Con Outlate	Unit	Itom Codo
End Cap/Cap Outlets	Weight (kg)	item code
End Cap for 321 System	1	DR664235
End Cap for 502 System	1	DR664240
Cap Outlet for 321 System	1	DR664225
Cap Outlet for 502 System	1	DR664230

Mono Beany with reference numbers indicated in **bold** black are available ex-stock. Mono Beany with reference numbers indicated in light are manufactured to order. Contact our sales office to discuss your requrements.

F Outfalls & Accessories

Outfalls & Accessories	Unit Weight (kg)	Item Code
Inline Slide Outfall	80	DR664180
Half Battered Access Cover	40	DR664010
45° Splayed Access Cover	40	DR664020
Rodding Box for 321 System	20	DR664185
Rodding Box for 502 System	30	DR664190

А

9		Length (mm)	Width (mm)	Height (mm)	Unit Weight (kg)	Item Code Standard Grey
	Centre Stone 321	1000	150	202	40	DR663110
	Centre Stone 502	1000	150	383	50	DR663115
	Right Hand 321	1000	150	202/321	50	DR663090
	Right Hand 502	1000	150	383/502	60	DR663095
	Left Hand 321	1000	150	202/321	50	DR663100
	Left Hand 502	1000	150	383/502	60	DR663105
	Centre Stone 321	1000	150	252	40	DR663310
	Centre Stone 502	1000	150	433	50	DR663315
	Right Hand 321	1000	150	252/321	50	DR663290
	Right Hand 502	1000	150	433/502	60	DR663295
	Left Hand 321	1000	150	252/321	50	DR663300
	Left Hand 502	1000	150	433/502	60	DR663305

G Cable Ducts

Cable Ducts		Unit Weight (kg)	Item Code
Half Battered	321 Cable Duct		DR664250
	502 Cable Duct		DR664255
45° Splayed	321 Cable Duct		DR664260
	502 Cable Duct		DR664265

D Radial Channels

45° Splayed

Radial Channels		Length (mm)	Width (mm)	Height (mm)	Unit Weight (kg)	Item Code
Half Battered	5/9 Internal Radius 321	490	150	321	20	DR663050
	5/9 Internal Radius 502	490	150	502	30	DR663060
	5/9 External Radius 321	490	150	321	20	DR663070
	5/9 External Radius 502	490	150	502	30	DR663080
	20/10 Internal Radius 321	490	150	321	20	DR663055
	20/10 Internal Radius 502	490	150	502	30	DR663065
	20/10 External Radius 321	490	150	321	20	DR663075
	20/10 External Radius 502	490	150	502	30	DR663085
45° Splayed	5/9 Internal Radius 321	490	150	321	20	DR663140
	5/9 Internal Radius 502	490	150	502	30	DR663150
	5/9 External Radius 321	490	150	321	20	DR663160
	5/9 External Radius 502	490	150	502	30	DR663170
	20/10 Internal Radius 321	490	150	321	20	DR663145
	20/10 Internal Radius 502	490	150	502	30	DR663155
	20/10 External Radius 321	490	150	321	20	DR663165
	20/10 External Radius 502	490	150	502	30	DR663175

Drawing 1 of 9*

Drawing 2 of 9*

*Units located in areas subject to a frequent number of high speed and/or heavy good vehicle impacts, (i.e. junctions, round abouts and lay bys) shall have a full height rear launch

100

OIT

Soft Landscape

30° X

353

Drawing 3 of 9*

Drawing 4 of 9*

Drawing 5 of 9*

Drawing 6 of 9*

Drawing 7 of 9*

Mono Beany[®]

*Units located in areas subject to a frequent number of high speed and/or heavy good vehicle impacts, (i.e. junctions, round abouts and lay bys) shall have a full height rear launch

Drawing 9 of 9*

*Units located in areas subject to a frequent number of high speed and/or heavy good vehicle impacts, (i.e. junctions, round abouts and lay bys) shall have a full height rear launch

Notes For Mono Beany

Drawings 1 to 9

- 1. Mortars shall be;
 - i. A Mortar class 12 cement mortar to BS EN 998-2 for general bedding and levelling
 - ii. Marshalls' M-Flex for bedding Mono Beany access covers onto silt boxes
 - iii. Marshalls' M-Flex for bedding the sections of the Marshalls' Trapped Gully Unit sections
- 2. Concrete bed, haunch and surround shall be;
 - i. A concrete mix ST1 to BS 8500-1&2 and BS EN 206-1 for Base Units used in the normal kerb application
 - ii. A concrete mix ST1 to BS 8500-1&2 and BS EN 206-1 for Beany Trapped Gully, Silt Traps, Catch Pits, end cap and outfall details
 - iii. Rear haunch shall be full height when used in areas subject to frequent high impact and/or heavy goods vehicular impact (i.e., junctions, roundabouts or layby's) or in areas of soft landscaping to the rear.
- **3.** Marshalls' vertical joint sealant, M-Seal, shall be applied to all vertical faces to achieve a watertight seal.
- **4.** Mono Beany Access Covers and Frames are hinged and handed to the direction of the traffic, specified "nearside" and "offside".
- Movement joint details that fully isolate the Mono Beany whilst maintaining restraint shall be provided adjacent to all concrete slabs, even when the slab is covered by other materials.
- 6. All dimensions are in millimetres

Specification

Introduction

The following specification covers the complete Mono Beany system including ancillary fittings and is compatible with the Standard Detail Sheets. Where the Manual of Contract Documents for Highway Works is used, information for 'Appendix 5/5: Combined Drainage and Kerb systems' is available on request.

Mono Beany Combined Kerb and Drain Linear Drainage system

- The combined kerb and drainage system shall be Marshalls Mono Beany[®], manufactured in pre-cast concrete, with the exception of certain ancillary items which are manufactured in cast iron as supplied by Marshalls, Halifax HX5 9HT in accordance with Standard Detail Sheets.
- **2.** The combined kerb and drainage shall consist of a one part system of constant depth blocks
 - a. Units shall be a maximum of 321/502*mm deep, 150mm wide and 1000mm long.
 - b. Units laid to radii of less than 40m shall utilise 500mm units and for radii of less than 30m purpose made radial blocks as appropriate
 - c. Kerb upstand shall be 125/75*mm (HB/SP*)
 - d. Kerb profile to be Half Battered / 45° Splay*
 - e. The unit shall be formed in pre-cast concrete with an integral plastic internal lining.
- **3.** All components of the Mono Beany system shall comply with the British Standard BS EN1433:2002, load classification D400 and the following:
 - a. All units shall be 3rd party accredited with the Kite Mark.
 - b. The water inlet aperture shall increase in size towards the inside of the unit with a minimum divergence angle of 5°
 - c. The angle of incline of the water inlet aperture shall be at least 30° to the horizontal
 - d. Water inlet apertures shall be wholly within individual units and not within 100mm of the end of each unit
 - e. When installed, the depth of construction from the top of the base channels to the drained area surface shall be not less than 125mm
 - f. The system shall have a minimum of 12,850mm²/m water inlet aperture area
- **4.** The combined kerb linear drainage shall be installed to line and level indicated in the contract and in accordance with manufacturer's instructions and standard details.
- 5. The drainage system shall be installed in accordance with manufacturers recommendations, industry best practice or as detailed in the contract / WRc Sewers for Adoption; 7th Edition : 2012 / BS EN 752:2008 / BS 8000: Part 14:1989*

Note: * delete as required

Construction

Excavation

- **1.** Sufficient material should be excavated to accommodate the Units, concrete bedding and haunching.
- 2. Any 'soft spots' or poorly compacted formation should be made good.

Setting Out

- Setting out pins should be accurately located to the correct line and level with a string line level placed to the rear of the kerb.
- 2. Sufficient setting out pins should be inserted where Mono Beany Units are laid on horizontal curves

Outfalls

- 1. Mono Beany Outfalls should be installed first.
- Sufficient material should be excavated to accommodate the Trapped Mono Beany Gulley
- **3.** 125mm of ST4 mix (BS 8500-1&2) concrete of the appropriate mix is placed in the bottom of the excavation
- **4.** The bottom section of the two part Mono Beany Outfall is lowered into position
- 5. Sufficient M-Flex sealant is gunned onto the top horizontal surface of the bottom section of the two part Beany Outfall so as to provide a seal between the top and bottom sections
- **6.** The bedding concrete should be laid and brought up flush to the top of the Mono Beany Outfall.
- **7.** The Cast iron Access Cover & Frame Units should be set directly onto a liberal quantity of stiff, cement mortar to completely fill the whole of the joint.

Mono Beany Unit Installation

- 1. Bedding concrete (ST1 to BS 8500-1&2) of the appropriate thickness and depth shall be laid
- 2. Mono Beany Units shall be laid onto the freshly mixed bedding concrete, starting at the outfall, i.e. working uphill
- **3.** Alternatively, the Mono Beany Units may be bedded on to a layer of 10 to 40mm cement mortar (M12 mortar to BS EN 998-2) on a previously prepared concrete foundation.
- Where cutting is necessary, one or two Units shall be cut so that no single Unit is less than 200mm in length and no cuts shall be within 50mm of the inlet aperture. No cutting shall impair the stability of the Unit.
- **5.** All cutting and trimming of the Units shall be carried out with an appropriate cutting tool.

Mono Beany Joint Sealant

1. Sufficient Marshalls' M-Flex sealant should be gunned into the sealant groove at either end of the unit.

Mono Beany End Caps

- Where the Mono Beany run does not terminate at an outfall, the base unit shall be sealed using the Mono Beany End Cap.
- The End Cap shall be securely placed against the vertical end of the base unit and haunched with fresh concrete (ST1 mix to BS 8500-1&2).

Pavement Installation

- Where Mono Beany is laid on or adjacent to existing or proposed concrete slabs, transverse joints shall be formed within the units and haunching adjacent to the slab joints and also longitudinal movement joints between the haunching and the slabs.
- **2.** Where necessary, the Unit drainage openings shall be protected against the ingress of material during concreting operations by covering with Waterproof Cloth Tape.
- 3. Where Mono Beany is installed in areas of soft landscaping or areas subject to frequent high impact and/or heavy goods vehicular impact (i.e., junctions, roundabouts or layby's) Marshalls recommend a full height rear haunch

Health & Safety

- **4.** All necessary Personal Protective Equipment (PPE) should be worn on site, as site rules stipulate. Goggles, ear defenders, dust masks and protective footwear must always be worn whenever cutting operations are undertaken.
- COSHH All relevant health and safety information, including COSHH data sheets, can be obtained from Marshalls Advisory Services, or the Marshalls Design Team on 0845 3020606.

Client: Highways England

Contractor: Costain

Engineer: Mouchel (Manchester) Marshalls products used:

- 15,000 linear metres of Mono Beany
- Bespoke transition unit

Mono Beany[®]

Mono Beany Case Study - M1

Marshalls supplied 15,000 linear metres of Mono Beany one-piece combined kerb and drainage to the new M1 smart motorway scheme.

Challenge

The road network is a crucial part of our national transport system and failures to improve these networks increases cost, hinders employment opportunities and makes it harder to do business.

Congestion is already a serious problem on the M1 between junctions 28 and 31 which carries around 95,000 vehicles per day.

The challenge was to install new infrastructure, including drainage attenuation, with minimal disruption and to select a suitable product engineered to help contractors meet deadlines. This would ensure the M1 was open and running to its full capacity within the project timescales. The client also needed to keep within budget and didn't want to pay for a costly over-engineered system.

Solution

Marshalls was chosen to supply linear drainage to the project. Mono Beany is Marshalls' first one-piece combined kerb and drainage system made with ultra-tough M-Tech concrete which has been proven to significantly reduce installation time.

This innovative product is available in two depths which both have a recycled inner plastic core to provide hydraulic flow benefits at low and medium capacities. Each one metre unit can carry up to 40 tonnes (Class D400) when trafficked. The inlet apertures are divergent and angled at 45° to prevent blockages and maximise drainage efficiency. These features ensure surface water is cleared rapidly and internal flow is smooth and efficient.

The hydraulic capacity requirements varied along the run and therefore a mix of Mono Beany 321 and 502 units were required as this was deemed more cost-effective. Marshalls also used its expertise to develop a new transition unit to complete the M1 scheme as part of the Highways Agency's focus on innovation. This was developed in order to create a smooth hydraulic transition from a 502 to a 321 Mono Beany unit, which reduced the hydraulic capacity, while coming within budget.

Benefit

Costain initially anticipated it would lay 240 metres of Mono Beany per day, however using the revolutionary, easy-to-install Mono Beany system the installation time was considerably reduced, with 340 metres installed per day to the scheme.

Malcolm Bell, Construction Manager from Costain said: "Due to how quickly we were able to install the innovative Mono Beany system there was an increased demand on deliveries to site. Marshalls offered a reliable and guaranteed supply throughout the project, delivering three to four loads per week direct-to-site, often delivering two loads per day. This helped to ensure we met our completion deadlines and kept works disruption to a minimum.

"Working with Marshalls also offered Costain a dedicated and knowledgeable design team to meet our requirements for this scheme.

"These are all important factors when tasked with installing over nine miles of drainage to a major strategic route connecting people, communities and businesses."

In the longer term this scheme will help relieve congestion and smooth traffic flow along this stretch of the M1, improving safety and journey times for commuters. These benefits will also support economic development in the region.

Responding to the recent announcement by Highways England that there will be a £1.5bn investment in smart motorway schemes Marshalls Drainage Trading Director said: "Marshalls is already engaged in a number of smart motorway schemes as part of this investment, offering design expertise on a wide range of suitable products.

"As the UK's leading supplier of hard landscaping materials, we are committed to developing effective water management and linear drainage solutions to meet the needs of contractors.

"Having already supplied Junctions 28-31 of the M1, we are poised for further involvement to improve the road network and have the capacity and capability to deal with further orders."

Le.

- Bridge Beany[®]
- Only Type I E600 product available on the market
- High performance solution to the Bridge drainage market
- Cost effective option for a variety of schemes
- Tailored & Value engineered solution for standalone or in conjunction to the Beany Range
- Special widths, depths and up-stands can be manufactured to suit project requirements

Combined Kerb and Drainage System

- Bridge beany is the markets only Type-I E600 bridge drainage system. This Kitemark proven system provides an E600 loading classification without any haunching providing a flexible and cost-effective solution for bridge deck drainage requirements.
- The product is compatible with Marshalls market leading Beany, Mini Beany, and Mono Beany systems, further extending the use of this product on highways and carriageways providing a total solution.

The System

• Bridge Beany is manufactured as a one piece solution with five apertures along the face of each 500mm unit maximising inlet capacity. The Ductile Iron properties of the units guarantees an E600 rated bridge deck drainage system strong enough to withstand loadings imposed by both road and construction traffic when installed.

Versatile

- Whether it be a new or existing bridge structure the simplistic design of Bridge Beany provides features which give it significant engineering benefits over alternative systems.
- The flexibility of bespoke units and accessories coupled with Marshalls hydraulic and product design service, delivers a tailored value engineered solution that provides excellent surface drainage efficiency meeting exact flow rate and design requirements.

High Capacity Performance

- Bridge Beany is available as a 450mm wide unit to compensate for the restricted construction depth, whilst proving extra capacity.
- Each unit has five 60mm inlets spaced at 40mm intervals to maximize inlet capacity in periods of heavy rainfall, ensuring surface water is quickly and efficiently removed.

Construction Saving

- The Bridge Beany System combines water interception and transportation in one system. This eliminates the need for drilling the bridge deck to accommodate gullies and the connection of sub-surface and suspended carrier pipes reducing construction costs and savings time.
- Simple one part system straight forward to design and detail, reducing design times and cost. Easy to set out and easy to install.
- The overall construction period can be reduced as carriage way materials
 may be laid in a continuous sequence. Unlike laying conventional
 drainage, excavations are kept to a minimum without exposing the
 formation and sub-base surfaces to possible periods of adverse weather
- Underground cables and services can be avoided so contractual/ insurance claims are likely to be much less than when laying conventional drainage.
- Bridge Beany is certified to E600 loading as a Type-I system. A type-I system can be laid in conjunction with standard parapet and surfacing material eliminating the time and material cost of a concrete haunch.

Low Maintenance

- If a blockage does occur, it can be easily located and rectified by rodding
 or jetting from an access point or through an aperture adjacent to the
 blockage as appose to maintaining carrier pipes that are set within the
 sub-base or suspended below the bridge.
- The one piece design ensures units lock into the construction of the concrete bridge deck and road surface reducing or eliminating the risk of units becoming lose or going missing, reducing replacement maintenance costs.
- Bridge Beany is manufactured in ductile iron enabling the units to be uplifted and re-laid after necessary maintenance on the road or bridge structure.

Engineering Benefits

Manufacture

The system's main components are manufactured from ductile iron with a bitumen coating applied.

The high inherent strength and durability of ductile iron means the Bridge Beany System can:

- Allow complete compaction of surfacing materials adjacent to the channel during construction without damage.
- Be up-lifted and re-laid without effecting the performance of the units when road works needs to be carried out on the bridge structure.
- Provide flexibility of bespoke units enabling a solution to suit a wide range of capacity requirements minimizing outfalls.

Water Inlet Aperture

Each Bridge Beany unit has a series of road surface and sub-surface inlets to maximize the inlet capacity and efficiency of the system, reducing the risk for traffic is adverse weather.

- The three Sub-surface inlets on each unit reduces the pressure created by the sub-surface water, preventing erosion of the road surface and concrete bridge deck.
- Each 500mm unit has five 60mm road surface inlets to quickly and efficiently remove the surface water run-off reducing the amount of water absorbed into the road sub-base.
- Located 40mm apart on each unit to give maximum strength preventing resistance against roads imposed by overriding heavy vehicles.

Type-I System

Bridge Beany is the markets only kitemarked Type-I E600 system that can withstand a loading of 66 tonnes as a freestanding until with no haunching material.

- Bridge Beany requires no concrete haunch resulting in a saving of approx. 250kg per linear meter reducing the overall weight on the bridge structure.
- Bridge Beany will perform to E600 without being reliant on the installation surround.

Expansion Joint Solutions

The expansion joint on a bridge often proves to be the most problematic area for both Contractors and Designers. Allowing for movement whilst keeping the joint dry is of primary importance on any bridge.

The Bridge Beany system offers several types of expansion joints ranging from a small single pipe to a large capacity unit that enable the designer or contractor to cross an existing or new expansion joint.

The expansion units can allow horizontal, vertical, axial and lateral movement of the joint whilst meeting the same performance requirements as the standard bridge drainage units.

Pinch Point Units

Bridge Beany pinch point units are designed for additional strength for heavily trafficked junctions, road abouts and areas subject to HGV traffic

Components

HALF BATTERED

Half Battered 500 x 450 x 125

Half Battered 500 x 350 x 125

Half Battered 500 x 275 x 125

Half Battered 500 x 175 x 125

Half Battered 500 x 150 x 125

45° SPLAYED

45° Splayed

500 x 450 x 100

500 x 350 x 100

45° Splaved

45° Splaved 500 x 275 x 100

45° Splayed

500 x 175 x 100

45° Splayed 500 x 150 x 100

ACCESSORIES

Rodding & Outlet Units

- The access lid is lockable for improved security
- Compatible with the standard units regardless of size or profile •
- Removable lid provides large access opening for the emptying of silt traps • and outfall sumps using traditional equipment
- Special lids can be designed for all access requirements
- Outlet unit can be configured to meet individual requirements; size, exit . angle or position (base, rear and end)

Transition Units

- · Designed to allow smooth transition from one unit height to width to another or the Beany systems
- Provides uninterrupted flow between the units minimizing impact on the • hydraulic performance

Droppers And Flush Units

- Droppers are available in left or right hand units •
- Uninterrupted flow across a pedestrian crossing or road junctions •
- Flush units are available with solid or heelsure slots .

End Units

Bridge Beany[®]

- Available right and left hand units •
- Forms the transition to normal half battered kerbs at pedestrian or vehicular crossings

- Available as a type 1 or type 5 expansion joint •
- Each unit is bespoke to enable the system to cross an existing • or new expansion joint.
- Designed to allow horizontal, vertical, axial and lateral • movement of the joint

Rodding Unit

Base Outlet Unit

Transition Unit

Right Hand Dropper

Type 5 Expansion Joint

Left Hand

Dropper

Type 1 Expansion Joint

Hydraulic Data

FLOW CAPACITY

Special widths, depths and up-stands can be manufactured to suit project requirements

Hydraulic Data

The Bridge Beany hydraulic data stated in the following tables is for the standard range only and comprises of flow capacity, in litres per second (I/s) and velocity in metres per second (m/s). This data has been calculated using the HR Wallingford method.

If a bespoke system is required, specific hydraulic flow calculations to meet the exact bridge deck requirements can be provided free of charge.

Half Battered

450 Half Battered	450 Half Battered															
Gradient	Ze	ro	1 in '	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	16.00	0.40	23.10	0.57	29.10	0.72	31.90	0.79	36.40	0.90	45.70	1.13	51.50	1.27	61.10	1.51
100	9.30	0.23	20.40	0.50	30.40	0.75	35.30	0.87	43.00	1.06	60.00	1.46	65.00	1.60	74.60	1.84
150	2.60	0.06	17.70	0.44	31.80	0.78	38.70	0.95	49.60	1.22	72.60	1.79	78.50	1.94	88.00	2.17
200	2.10	0.05	15.10	0.04	33.10	0.82	42.00	1.04	56.20	1.39	86.10	2.12	92.00	2.27	101.50	2.50

350 Half Battered	350 Half Battered															
Gradient	Ze	ro	1 in 1	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	11.60	0.37	16.70	0.53	21.00	0.67	23.10	0.74	26.30	0.84	33.00	1.06	37.20	1.19	44.10	1.41
100	6.70	0.22	14.80	0.47	22.00	0.70	25.50	0.82	31.10	0.99	42.70	1.37	46.90	1.15	53.80	1.72
150	1.90	0.01	12.80	0.41	23.00	0.73	27.90	0.89	35.80	1.15	52.40	1.69	56.70	1.81	63.60	2.03
200			10.90	0.35	24.00	0.77	30.40	0.97	40.60	1.30	62.20	1.99	66.40	2.12	73.30	2.35

275 Half Battered	275 Half Battered															
Gradient	Ze	ro	1 in '	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	8.40	0.35	12.20	0.50	15.30	0.63	16.80	0.69	19.20	0.79	24.00	0.99	27.10	1.12	32.20	1.32
100	4.90	0.20	10.80	0.44	16.00	0.66	18.60	0.77	22.70	0.93	31.10	1.28	34.20	1.41	39.30	1.62
150	1.40	0.06	9.30	0.38	16.70	0.69	20.40	0.84	26.10	1.08	38.20	1.58	41.30	1.70	46.30	1.91
200			7.90	0.33	17.40	0.72	22.10	0.91	29.60	1.22	45.30	1.87	48.40	1.99	53.40	2.20

175 Half Battered																
Gradient	Ze	ro	1 in 1	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	4.60	0.31	6.70	0.44	8.40	0.56	9.20	0.61	10.50	0.70	13.10	0.88	14.80	0.99	17.60	1.17
100	2.70	0.18	5.90	0.39	8.80	0.58	10.20	0.68	12.40	0.83	17.00	1.14	18.70	1.25	21.50	1.43
150	0.70	0.05	5.10	0.34	9.10	0.61	11.10	0.74	14.30	0.95	20.90	1.40	22.60	1.51	25.30	1.69
200			4.30	0.29	9.50	0.64	12.10	0.81	16.20	1.08	24.80	1.65	26.50	1.77	29.20	1.95

150 Half Battered																
Gradient	Ze	ro	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	2.90	0.28	4.20	0.41	5.30	0.51	5.80	0.56	6.60	0.64	8.30	0.80	9.30	0.90	11.00	1.07
100	1.70	0.16	3.70	0.36	5.50	0.53	6.40	0.62	7.80	0.75	10.70	1.04	11.80	1.14	13.50	1.31
150	0.50	0.05	3.20	0.31	5.70	0.56	7.00	0.68	9.00	0.87	13.10	1.27	14.20	1.37	15.90	1.54
200	0.50	0.05	2.70	0.26	6.00	0.58	7.60	0.74	10.20	0.98	15.60	1.51	16.60	1.61	18.40	1.78

Hydraulic Data

45° Splayed

450 Splayed	450 Splayed															
Gradient	Ze	ro	1 in 1	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	16.00	0.40	23.10	0.57	29.10	0.72	31.90	0.79	36.40	0.90	45.70	1.13	51.50	1.27	61.10	1.51
100	9.30	0.23	20.40	0.50	30.40	0.75	35.30	0.87	43.00	1.06	60.00	1.46	65.00	1.60	74.60	1.84
150	2.60	0.06	17.70	0.44	31.80	0.78	38.70	0.95	49.60	1.22	72.60	1.79	78.50	1.94	88.00	2.17
200	2.10	0.05	15.10	0.04	33.10	0.82	42.00	1.04	56.20	1.39	86.10	2.12	92.00	2.27	101.50	2.50

350 Splayed	550 Splayed															
Gradient	Ze	ro	1 in '	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	11.60	0.37	16.70	0.53	21.00	0.67	23.10	0.74	26.30	0.84	33.00	1.06	37.20	1.19	44.10	1.41
100	6.70	0.22	14.80	0.47	22.00	0.70	25.50	0.82	31.10	0.99	42.70	1.37	46.90	1.15	53.80	1.72
150	1.90	0.01	12.80	0.41	23.00	0.73	27.90	0.89	35.80	1.15	52.40	1.69	56.70	1.81	63.60	2.03
200			10.90	0.35	24.00	0.77	30.40	0.97	40.60	1.30	62.20	1.99	66.40	2.12	73.30	2.35

275 Splayed																
Gradient	Ze	ro	1 in 1	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	8.40	0.35	12.20	0.50	15.30	0.63	16.80	0.69	19.20	0.79	24.00	0.99	27.10	1.12	32.20	1.32
100	4.90	0.20	10.80	0.44	16.00	0.66	18.60	0.77	22.70	0.93	31.10	1.28	34.20	1.41	39.30	1.62
150	1.40	0.06	9.30	0.38	16.70	0.69	20.40	0.84	26.10	1.08	38.20	1.58	41.30	1.70	46.30	1.91
200			7.90	0.33	17.40	0.72	22.10	0.91	29.60	1.22	45.30	1.87	48.40	1.99	53.40	2.20

175 Splayed																
Gradient	Ze	ro	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	4.60	0.31	6.70	0.44	8.40	0.56	9.20	0.61	10.50	0.70	13.10	0.88	14.80	0.99	17.60	1.17
100	2.70	0.18	5.90	0.39	8.80	0.58	10.20	0.68	12.40	0.83	17.00	1.14	18.70	1.25	21.50	1.43
150	0.70	0.05	5.10	0.34	9.10	0.61	11.10	0.74	14.30	0.95	20.90	1.40	22.60	1.51	25.30	1.69
200			4.30	0.29	9.50	0.64	12.10	0.81	16.20	1.08	24.80	1.65	26.50	1.77	29.20	1.95

150 Splayed																
Gradient	Ze	ro	1 in	1000	1 in	500	1 in	400	1 in	300	1 in	200	1 in	100	1 in	50
Length (m)	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s	l/s	m/s
50	2.90	0.28	4.20	0.41	5.30	0.51	5.80	0.56	6.60	0.64	8.30	0.80	9.30	0.90	11.00	1.07
100	1.70	0.16	3.70	0.36	5.50	0.53	6.40	0.62	7.80	0.75	10.70	1.04	11.80	1.14	13.50	1.31
150	0.50	0.05	3.20	0.31	5.70	0.56	7.00	0.68	9.00	0.87	13.10	1.27	14.20	1.37	15.90	1.54
200	0.50	0.05	2.70	0.26	6.00	0.58	7.60	0.74	10.20	0.98	15.60	1.51	16.60	1.61	18.40	1.78

Bridge Beany Component Codes

A Constant Depth Channel

Constant Depth Channel	Length (mm)	Width (mm)	Wier Height (mm)	Height (mm)	lnvert Depth (mm)	Unit Weight (kg)	Item Code
45° Splayed	500	150	100	200	90	14	DR691201
	500	175	100	200	90	17	DR691202
	500	275	100	200	90	26	DR691203
	500	350	100	200	90	35	DR691204
	500	450	100	200	90	49	DR691205
Half Battered	500	150	125	200	90	14	DR691290
	500	175	125	200	90	17	DR691291
	500	275	125	200	90	26	DR691292
	500	350	125	200	90	35	DR691293
	500	450	125	200	90	49	DR691294

B Dropped Crossing Accessories

Road Crossing Acc	ressories	Length(mm)	Width (mm)	Height (mm)	Unit Weight (kg)	Item Code
45° Splayed	Centre 150	500	150	100	14	DR691280
	Right Hand 150	500	150	200/100	14	DR691260
	Left Hand 150	500	150	200/100	14	DR691265
	Centre 175	500	175	100	17	DR691281
	Right Hand 175	500	175	200/100	17	DR691261
	Left Hand 175	500	175	200/100	17	DR691266
	Centre 275	500	275	100	26	DR691282
	Right Hand 275	500	275	200/100	26	DR691262
	Left Hand 275	500	275	200/100	26	DR691267
	Centre 350	500	350	100	35	DR691283
	Right Hand 350	500	350	200/100	35	DR691263
	Left Hand 350	500	350	200/100	35	DR691268
	Centre 450	500	450	100	49	DR691284
	Right Hand 450	500	450	200/100	49	DR691264
	Left Hand 450	500	450	200/100	49	DR691269
Half Battered	Centre 150	500	150	100	14	DR691370
	Right Hand 150	500	150	200/100	14	DR691350
	Left Hand 150	500	150	200/100	14	DR691355
	Centre 175	500	175	100	17	DR691371
	Right Hand 175	500	175	200/100	17	DR691351
	Left Hand 175	500	175	200/100	17	DR691356
	Centre 275	500	275	100	26	DR691372
	Right Hand 275	500	275	200/100	26	DR691352
	Left Hand 275	500	275	200/100	26	DR691357
	Centre 350	500	350	100	35	DR691373
	Right Hand 350	500	350	200/100	35	DR691353
	Left Hand 350	500	350	200/100	35	DR691358
	Centre 450	500	450	100	49	DR691374
	Right Hand 450	500	450	200/100	49	DR691354
	Left Hand 450	500	450	200/100	49	DR691359

С

Е

Bridge Beany Component Codes

End Caps		Unit Weight (kg)	Item Code
45° Splayed	End Cap 150	5	DR691210
	End Cap 175	5	DR691211
	End Cap 275	10	DR691212
	End Cap 350	10	DR691213
	End Cap 450	15	DR691214
Half Battered	End Cap 150	5	DR691300
	End Cap 175	5	DR691301
	End Cap 275	10	DR691302
	End Cap 350	10	DR691303
	End Cap 450	15	DR691304

E Expansion Joints

Expansion Joints		Unit Weight (kg)	Item Code
45° Splayed	Type 1 Expansion Joint 150	100	DR691240
	Type 1 Expansion Joint 175	100	DR691241
	Type 1 Expansion Joint 275	150	DR691242
	Type 1 Expansion Joint 350	200	DR691243
	Type 1 Expansion Joint 450	250	DR691244
	Type 5 Expansion Joint 150	200	DR691245
	Type 5 Expansion Joint 175	300	DR691246
	Type 5 Expansion Joint 275	400	DR691247
	Type 5 Expansion Joint 350	500	DR691248
	Type 5 Expansion Joint 450	600	DR691249
Half Battered	Type 1 Expansion Joint 150	100	DR691330
	Type 1 Expansion Joint 175	100	DR691331
	Type 1 Expansion Joint 275	150	DR691332
	Type 1 Expansion Joint 350	200	DR691333
	Type 1 Expansion Joint 450	250	DR691334
	Type 5 Expansion Joint 150	200	DR691335
	Type 5 Expansion Joint 175	300	DR691336
	Type 5 Expansion Joint 275	400	DR691337
	Type 5 Expansion Joint 350	500	DR691338
	Type 5 Expansion Joint 450	600	DR691339

D Outfalls & Rodding Units

Outfalls & Rodd	Outfalls & Rodding Units		Item Code
45° Splayed	Outfall 150	18	DR691230
	Outfall 175	21	DR691231
	Outfall 275	30	DR691232
	Outfall 350	39	DR691233
	Outfall 450	54	DR691234
	Rodding Unit 150	14	DR691220
	Rodding Unit 175	17	DR691221
	Rodding Unit 275	26	DR691222
	Rodding Unit 350	35	DR691223
	Rodding Unit 450	49	DR691224
Half Battered	Outfall 150	18	DR691320
	Outfall 175	21	DR691321
	Outfall 275	30	DR691322
	Outfall 350	39	DR691323
	Outfall 450	54	DR691324
	Rodding Unit 150	14	DR691310
	Rodding Unit 175	17	DR691311
	Rodding Unit 275	26	DR691312
	Rodding Unit 350	35	DR691313
	Rodding Unit 450	49	DR691314

Drawing 1 of 1

Bridge Beany[®]

Specification

Notes For Bridge Beany

Drawings 1 to 1

- **1.** All dimensions are in millimetres
- 2. Mortar shall be Class 12 to BS EN 988-2:2003
- **3.** Concrete shall be of a minimum compressive strength of designation ST1 in normal kerb applications.
- **4.** Cementitious based bedding material shall contain a waterproofing additive.
- The channel unit shall be ductile iron (S.G.) manufactured to EN-GJS-450-10.
- 6. The standard details show the general arrangements used by Marshalls for product evaluation and load test classification purposes which may differ from customer requirements and site conditions and should be checked and accepted by the Engineer for project use.

Introduction

The following specification covers the complete Bridge Beany linear drainage system including ancillary fittings and is compatible with the standard detail drawings.

Where the Manual of Contract Drawings for Highways Works is used, refer to 'Appendix 5/5: Linear Channels'.

Bridge Beany

- 1. The linear drainage system shall be Bridge Beany supplied by Marshalls plc. All channel materials and ancillary products detailed in this specification shall be supplied by Marshalls.
- 2. All components of the system shall be type tested and be fully compliant with the requirements of BS EN 1433:2002: Drainage channels for vehicular and pedestrian areas Classification, design and testing requirements, marking and evaluation of conformity' when installed as per manufacturers recommendations.
- **3.** The linear drainage system shall be a one piece unit manufactured in a single material (Ductile Iron) with the exception of certain ancillary products as supplied by the manufacturers in accordance with standard details.
- 4. The linear drainage channel:
 - a. Kerb profile shall be Half Battered (HB) / 45° Splay (SP)*.
 - b. Units shall be a maximum of 200mm deep and
 150/175/275/350/450* mm wide. Units laid to radii of less than
 50m shall utilise purpose made radial blocks as appropriate.
 - c. Kerb upstand shall be 125/100/75* mm.
 - d. The weir height shall be 125/100/75* mm.
 - e. Shall be of a constant depth between ancillaries or access points
 - f. The units shall be Type'I' (unhaunched) and meet a minimum of load class of E600 when tested in accordance with BSEN 1433.
 - g. All units shall be 3rd party accredited with the Kite Mark complete with manufacturers identifying marks.
 - h. The weir height of the water inlet aperture shall be 125/100/75* mm (HB/SP*).
 - i. The water inlet apertures shall be of equal size and shape with a total of 5 apertures per 500mm unit.
 - j. The combined area of the inlet apertures shall be ≥ the cross section area of the internal channel unit.
 - k. Water inlet apertures shall be wholly contained within individual units

Specification

- The internal cross sectional area shall be a minimum 9100/10700/17500/22600/29300 mm².
- m. Water shall exit the channel units via an outfall with an outlet of 150/225* mm nominal bore located in the base/rear/side* of the drainage outfall unit.
- n. The location of outfalls and silt traps shall be as detailed in contract documents.
- Channel unit shall be bedded on a nominal 10/20* mm bed to allow for adjustment to line and level.
- **6.** Bedding mortar shall be Marshalls M-Bond or mortar designation (i) complying with Class M12 in accordance with BS EN 998-2.
- 7. Bedding concrete shall be designation ST1 in normal kerb applications.
- **8.** Cementitious based bedding material shall contain a waterproofing additive.
- **9.** Bridge Beany expansion joints shall be *Type 1 / Type 5** to compliment the requirements of the proprietary expansion joint manufacturer.
- The primary material of the channel unit system shall be ductile iron (S.G.) manufactured to minimum standard EN-GJS-450-10.
- 11. The unit shall consist of material which is 100% recyclable.
- 12. The unit shall be fire resistant.
- 13. The unit shall be UV resistant.
- **14.** The linear drainage shall be installed to line and level indicated in the contract and in accordance with manufacturer's instructions and standard details.
- 15. The drainage system shall be installed in accordance with manufacturers recommendations, industry best practice or as detailed in the contract / WRc Sewers for Adoption; *7th Edition : 2012 / BS EN 752:2008 / BS 8000: Part 14:1989**

Note: * delete as required

Introduction

Installation of the Bridge Beany combined kerb and drainage system should be carried out in accordance with the specification and standard detail drawings.

The following method of installation is recommended by Marshalls and it is based on conventional UK best practice construction techniques, installation and testing trials and if applicable, installation shall comply with the recommendations in the Construction Phase Plan as defined by the 'Construction (Design and Management) Regulations 2015'.

Should your application differ from standard installation guidance you should consult with your Engineer or Marshalls Technical Advice Team.

Excavation

Excavation is not normally required for Bridge deck units on new installations but the following advice should be taken on refurbishment or retro-fit projects.

Sufficient material should be excavated to accommodate the channel unit, levelling bed, and working areas. Place excavation support as required depending on channel size, native ground conditions and method of working. Any 'soft spots', poorly compacted formation or defective bridge deck structure should be made good.

Setting Out

Setting out pins should be accurately located in accordance with the contract drawings, with a string line level with the top and rear of the channel units. Pins should be located to avoid having to lift the channel units over the string line. The slots should be set so as to follow the longfall and crossfall of the final surface as required by the contract drawings.

Alternatively, a theodolite or similar electronic surveying equipment may be used. It is not recommended that line and level is set using internal channel faces.

Line and level should be checked at regular intervals and channels adjusted as required

Outfalls

Outfalls are preformed units and are laid in the same manner as standard kerb channel units. 125, 175 & 250 channels are supplied with a 150 mm nominal bore (NB) bottom outlet and 350 & 450 channels are supplied with a 225 mm NB bottom outlet as standard. Rear, end and other NB outlets and be supplied on request.

Outfalls should be laid first and positioned as per the contract drawings or at the appropriate orifice on the bridge structure.

Construction

Outfalls do not require bedding or haunching to achieve an E600 load class but should be bedded on a nominal 10 to 20 mm bed to allow for adjustment to line and level.

Bedding mortar shall be a 2 part epoxy type mortar such as Marshalls M-Bond or mortar designation (i) complying with class M12 in accordance with BS EN 998-2.

Bedding concrete shall be of a minimum compressive strength designation ST1 in normal kerb applications.

Cementitious based bedding material shall contain a waterproofing additive.

Care should be taken to not damage any waterproof membrane system during installation.

Channel Units

Channel units do not require bedding or haunching to achieve an E600 load class but should be bedded on a nominal 10 to 20 mm bed to allow for adjustment to line and level.

Bedding mortar shall be a 2 part epoxy type mortar such as Marshalls M-Bond or mortar designation (i) complying with class M12 in accordance with BS EN 998-2.

Bedding concrete shall be of a minimum compressive strength designation ST1 in normal kerb applications.

Cementitious based bedding material shall contain a waterproofing additive.

Care should be taken to not damage any waterproof membrane system during installation.

Starting at the outfall chamber, i.e. working uphill, Marshalls recommend the following installation technique:-

Place the bedding to the correct line and level allowing the channel units to be placed on to the upper surface.

Units should be placed using mechanical lifting apparatus such as a scissor or magnetic lifter and final adjustment can be made using a rubber mallet or similar tool.

To maintain water tightness, channels shall be sealed at each joint using Marshall's M-Flex. A nominal 10 mm bead shall be applied to one vertical face and placed adjacent to the next unit and pushed 'home' to complete the joint.

Where a channel run does not terminate at an outfall, the unit shall be sealed using the Bridge Beany End Cap which should be securely placed against the vertical end of the unit and sealed with Marshalls M-Flex.

Marshalls recommend the use of full channels and do not recommend cutting or alteration of channels and designs are be produced to accommodate full lengths with ancillaries.

Line and level should be check as required during installation.

Bridge Expansion Joints and Sealing of Gaps

Expansion joint units are installed in the same manner as outfall units.

Type 1 Expansion Joints

Install and fix the downstream and upstream unit either side of the joint. The end spigots should be facing each other and pointing at the joint.

Place the jubilee clips loosely over the ends of the flexible pipe and place each end of the pipe over a spigot stub. Trim or cut the connecting pipe to suit. Tighten the jubilee clip to ensure a good fit and ensure water tightness.

Place any waterproofing or joint material as required by the specification or expansion joint supplier ensuring that the pipe retains the ability to expand and contract.

Place the cover plate between the two expansion joint units in the recess area ensuring the slots in the plate align with the fixing points on the units. Secure the 'fixed' end of the plate with M10 bolts and lightly tighten the 'sliding' end of the plate. The plate should be sufficiently secure to avoid vertical or lateral movement by hand pressure but allow free movement under expansion and contraction of the bridge deck sections.

Type 5 Expansion Joints

Install and fix the downstream expansion joint unit.

Attach the rectangular bridging channel to the side of the upstream unit using M10 bolts.

Insert the free end of the rectangular channel on the upstream unit in to the downstream expansion joint unit and install and fix in place the upstream expansion joint unit. The rectangular bridging channel does not require any other method of fixing or securing.

Place any waterproofing or joint material as required by the specification or expansion joint supplier ensuring that the bridging channel retains the ability to 'slip' and move freely and to expand and contract without damage.

Place the cover plate between the two expansion joint units in the recess area ensuring the slots in the plate align with the fixing points on the units.

Construction

Secure the fixed end of the plate with M10 bolts and lightly tighten the 'sliding' end of the plate. The plate should be sufficiently secure to avoid vertical or lateral movement by hand pressure but allow free movement under expansion and contraction of the bridge deck sections.

Site Storage, Handling and Placing

Marshalls recommend that units are stored in their original packaging until required to help reduce the risk of damage and to help with movement around site.

It is the site contractor's responsibility to ensure that units are stored on solid level ground and in a clean and protected area away from potential site damage. Care should be taken when removing units from secure packaging and pallets and units should not be stacked more than one pallet high. Units shall not be stored close to sources of heat such as engine exhaust outlets or hot works areas such as welding and cutting.

Should the units be put in long term storage Marshalls recommend that the units are covered to protect mating surfaces and slot opening from dirt and debris until such time that they are required. Additional protection may be required to prevent accidental damage.

Marshalls advise that all drainage components should be installed by a safe method of working. The use of mechanical handling equipment such as magnetic or scissor lifters have proven to be of benefit and will eliminate manual handling. Marshall's do not recommend manual handling.

Commissioning

Whilst the channel units are strong enough to receive traffic as soon as installed, Marshalls do not recommend you load or traffic over the channel until the unit has been surrounded or 'bound' by the finished pavement to avoid the units been moved out of alignment and/or breaking the waterproof seal between units.

Particular care should be taken during the construction phase when conditions may be more onerous due to construction plant and machinery movements and/or incomplete construction.

As soon as then channel units are fully installed and the outfalls are connected, the Bridge deck units can be used straight away.

Where necessary, the drainage channel inlets shall be protected against the ingress of construction material during subsequent construction operations by covering with waterproof cloth tape.

Notes

- Marshalls recommended that channels are not cut to length on site, drainage runs will be calculated and supplied to multiples of whole units with ancillaries.
- 2. Outfalls, access chambers and silt traps shall be constructed in accordance with the Standard Details. Access chambers should be located at no more than 50m centres in long runs.
- 3. Access chamber covers are secured with M10 retaining screws.
- 4. All necessary Personal Protective Equipment (PPE) should be worn on site, as site rules stipulate. Goggles, ear defenders, dust masks and protective footwear must always be worn whenever cutting operations are undertaken.
- COSHH All relevant health and safety information, including COSHH data sheets, can be obtained from Marshalls Advisory Services, or the Marshalls Design Team on 0845 3020606.